BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 20405216)

  • 1. How to optimize maturation in a bioreactor for vascular tissue engineering: focus on a decision algorithm for experimental planning.
    Couet F; Mantovani D
    Ann Biomed Eng; 2010 Sep; 38(9):2877-84. PubMed ID: 20405216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fetal development, mechanobiology and optimal control processes can improve vascular tissue regeneration in bioreactors: an integrative review.
    Couet F; Meghezi S; Mantovani D
    Med Eng Phys; 2012 Apr; 34(3):269-78. PubMed ID: 22133487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new bioreactor adapts to materials state and builds a growth model for vascular tissue engineering.
    Couet F; Mantovani D
    Artif Organs; 2012 Apr; 36(4):438-45. PubMed ID: 22187974
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perspectives on the advanced control of bioreactors for functional vascular tissue engineering in vitro.
    Couet F; Mantovani D
    Expert Rev Med Devices; 2012 May; 9(3):233-9. PubMed ID: 22702253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 2-D coupled computational model of biological cell proliferation and nutrient delivery in a perfusion bioreactor.
    Shakeel M
    Math Biosci; 2013 Mar; 242(1):86-94. PubMed ID: 23291465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling of cell cultures in perfusion bioreactors.
    Yan X; Bergstrom DJ; Chen XB
    IEEE Trans Biomed Eng; 2012 Sep; 59(9):2568-75. PubMed ID: 22772976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visualizing feasible operating ranges within tissue engineering systems using a "windows of operation" approach: a perfusion-scaffold bioreactor case study.
    McCoy RJ; O'Brien FJ
    Biotechnol Bioeng; 2012 Dec; 109(12):3161-71. PubMed ID: 22627891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A miniaturized, optically accessible bioreactor for systematic 3D tissue engineering research.
    Laganà M; Raimondi MT
    Biomed Microdevices; 2012 Feb; 14(1):225-34. PubMed ID: 21984034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Breakthroughs in computational modeling of cartilage regeneration in perfused bioreactors.
    Raimondi MT; Causin P; Mara A; Nava M; Laganà M; Sacco R
    IEEE Trans Biomed Eng; 2011 Dec; 58(12):3496-9. PubMed ID: 21813363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro fabrication of a tissue engineered human cardiovascular patch for future use in cardiovascular surgery.
    Yang C; Sodian R; Fu P; Lüders C; Lemke T; Du J; Hübler M; Weng Y; Meyer R; Hetzer R
    Ann Thorac Surg; 2006 Jan; 81(1):57-63. PubMed ID: 16368335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deformation simulation of cells seeded on a collagen-GAG scaffold in a flow perfusion bioreactor using a sequential 3D CFD-elastostatics model.
    Jungreuthmayer C; Jaasma MJ; Al-Munajjed AA; Zanghellini J; Kelly DJ; O'Brien FJ
    Med Eng Phys; 2009 May; 31(4):420-7. PubMed ID: 19109048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A multiphysics/multiscale 2D numerical simulation of scaffold-based cartilage regeneration under interstitial perfusion in a bioreactor.
    Sacco R; Causin P; Zunino P; Raimondi MT
    Biomech Model Mechanobiol; 2011 Jul; 10(4):577-89. PubMed ID: 20865436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tissue growth in a rotating bioreactor. Part II: fluid flow and nutrient transport problems.
    Cummings LJ; Waters SL
    Math Med Biol; 2007 Jun; 24(2):169-208. PubMed ID: 17043081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A multiphysics 3D model of tissue growth under interstitial perfusion in a tissue-engineering bioreactor.
    Nava MM; Raimondi MT; Pietrabissa R
    Biomech Model Mechanobiol; 2013 Nov; 12(6):1169-79. PubMed ID: 23371525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling of flow-induced shear stress applied on 3D cellular scaffolds: Implications for vascular tissue engineering.
    Lesman A; Blinder Y; Levenberg S
    Biotechnol Bioeng; 2010 Feb; 105(3):645-54. PubMed ID: 19787638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Windows of operation for bioreactor design for the controlled formation of tissue-engineered arteries.
    Gerontas S; Farid SS; Hoare M
    Biotechnol Prog; 2009; 25(3):842-53. PubMed ID: 19399902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of bioreactors in maxillofacial tissue engineering.
    Depprich R; Handschel J; Wiesmann HP; Jäsche-Meyer J; Meyer U
    Br J Oral Maxillofac Surg; 2008 Jul; 46(5):349-54. PubMed ID: 18343545
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling and design of optimal flow perfusion bioreactors for tissue engineering applications.
    Hidalgo-Bastida LA; Thirunavukkarasu S; Griffiths S; Cartmell SH; Naire S
    Biotechnol Bioeng; 2012 Apr; 109(4):1095-9. PubMed ID: 22068720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing cell seeding of scaffolds in tissue engineering through manipulation of hydrodynamic parameters.
    Bueno EM; Laevsky G; Barabino GA
    J Biotechnol; 2007 May; 129(3):516-31. PubMed ID: 17324484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and evaluation of a novel subatmospheric pressure bioreactor for the preconditioning of tissue-engineered vascular constructs.
    Coakley DN; Shaikh FM; O'Sullivan K; Kavanagh EG; Grace PA; McGloughlin TM
    Int J Artif Organs; 2016 Feb; 39(2):77-83. PubMed ID: 26953899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.