These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 20405216)

  • 21. Engineered living blood vessels: functional endothelia generated from human umbilical cord-derived progenitors.
    Schmidt D; Asmis LM; Odermatt B; Kelm J; Breymann C; Gössi M; Genoni M; Zund G; Hoerstrup SP
    Ann Thorac Surg; 2006 Oct; 82(4):1465-71; discussion 1471. PubMed ID: 16996955
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Numerical simulation of global hydro-dynamics in a pulsatile bioreactor for cardiovascular tissue engineering.
    Shi Y
    J Biomech; 2008; 41(5):953-9. PubMed ID: 18261734
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mathematical modelling of fibre-enhanced perfusion inside a tissue-engineering bioreactor.
    Whittaker RJ; Booth R; Dyson R; Bailey C; Parsons Chini L; Naire S; Payvandi S; Rong Z; Woollard H; Cummings LJ; Waters SL; Mawasse L; Chaudhuri JB; Ellis MJ; Michael V; Kuiper NJ; Cartmell S
    J Theor Biol; 2009 Feb; 256(4):533-46. PubMed ID: 19014952
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fluid mechanics of a spinner-flask bioreactor.
    Sucosky P; Osorio DF; Brown JB; Neitzel GP
    Biotechnol Bioeng; 2004 Jan; 85(1):34-46. PubMed ID: 14705010
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Perfusion bioreactor system for human mesenchymal stem cell tissue engineering: dynamic cell seeding and construct development.
    Zhao F; Ma T
    Biotechnol Bioeng; 2005 Aug; 91(4):482-93. PubMed ID: 15895382
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of flow shear stress and mass transport on the construction of a large-scale tissue-engineered bone in a perfusion bioreactor.
    Li D; Tang T; Lu J; Dai K
    Tissue Eng Part A; 2009 Oct; 15(10):2773-83. PubMed ID: 19226211
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A multiscale approach in the computational modeling of the biophysical environment in artificial cartilage tissue regeneration.
    Causin P; Sacco R; Verri M
    Biomech Model Mechanobiol; 2013 Aug; 12(4):763-80. PubMed ID: 22975839
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Computational fluid dynamics modeling of steady-state momentum and mass transport in a bioreactor for cartilage tissue engineering.
    Williams KA; Saini S; Wick TM
    Biotechnol Prog; 2002; 18(5):951-63. PubMed ID: 12363345
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Construction and evaluation of urinary bladder bioreactor for urologic tissue-engineering purposes.
    Davis NF; Mooney R; Piterina AV; Callanan A; McGuire BB; Flood HD; McGloughlin TM
    Urology; 2011 Oct; 78(4):954-60. PubMed ID: 21982016
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Novel strategies to engineering biological tissue in vitro.
    Urciuolo F; Imparato G; Guaccio A; Mele B; Netti PA
    Methods Mol Biol; 2012; 811():223-44. PubMed ID: 22042683
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tissue-engineered vessel strengthens quickly under physiological deformation: application of a new perfusion bioreactor with machine vision.
    Xu J; Ge H; Zhou X; Yang D; Guo T; He J; Li Q; Hao Z
    J Vasc Res; 2005; 42(6):503-8. PubMed ID: 16155366
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of a seeded scaffold in the great omentum: feasibility of an in vivo bioreactor for bladder tissue engineering.
    Baumert H; Simon P; Hekmati M; Fromont G; Levy M; Balaton A; Molinié V; Malavaud B
    Eur Urol; 2007 Sep; 52(3):884-90. PubMed ID: 17229515
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tissue engineering of human cartilage in bioreactors using single and composite cell-seeded scaffolds.
    Mahmoudifar N; Doran PM
    Biotechnol Bioeng; 2005 Aug; 91(3):338-55. PubMed ID: 15959891
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mesenchymal stem cell-based tissue engineering of small-diameter blood vessels.
    Dong JD; Huang JH; Gao F; Zhu ZH; Zhang J
    Vascular; 2011 Aug; 19(4):206-13. PubMed ID: 21784877
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Design and validation of a dynamic flow perfusion bioreactor for use with compliant tissue engineering scaffolds.
    Jaasma MJ; Plunkett NA; O'Brien FJ
    J Biotechnol; 2008 Feb; 133(4):490-6. PubMed ID: 18221813
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tissue growth in a rotating bioreactor. Part I: mechanical stability.
    Waters SL; Cummings LJ; Shakesheff KM; Rose FR
    Math Med Biol; 2006 Dec; 23(4):311-37. PubMed ID: 16777926
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dynamics of diffusivity and pressure drop in flow-through and parallel-flow bioreactors during tissue regeneration.
    Podichetty JT; Dhane DV; Madihally SV
    Biotechnol Prog; 2012 Jul; 28(4):1045-54. PubMed ID: 22473960
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Organic tissues in rotating bioreactors: fluid-mechanical aspects, dynamic growth models, and morphological evolution.
    Lappa M
    Biotechnol Bioeng; 2003 Dec; 84(5):518-32. PubMed ID: 14574686
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bioreactor design considerations for hollow organs.
    Fish J; Halberstadt C; McCoy DW; Robbins N
    Methods Mol Biol; 2013; 1001():207-14. PubMed ID: 23494432
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantitative analysis of three-dimensional fluid flow in rotating bioreactors for tissue engineering.
    Botchwey EA; Pollack SR; Levine EM; Johnston ED; Laurencin CT
    J Biomed Mater Res A; 2004 May; 69(2):205-15. PubMed ID: 15057993
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.