These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 20405792)

  • 1. Ecophysiology of riparian cottonwood and willow before, during, and after two years of soil water removal.
    Hultine KR; Bush SE; Ehleringer JR
    Ecol Appl; 2010 Mar; 20(2):347-61. PubMed ID: 20405792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Putah Creek hydrology affecting riparian cottonwood and willow tree survival.
    Grismer ME
    Environ Monit Assess; 2018 Jul; 190(8):458. PubMed ID: 29995189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How do riparian woody seedlings survive seasonal drought?
    Stella JC; Battles JJ
    Oecologia; 2010 Nov; 164(3):579-90. PubMed ID: 20480183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leaf gas exchange characteristics differ among Sonoran Desert riparian tree species.
    Horton JL; Kolb TE; Hart SC
    Tree Physiol; 2001 Mar; 21(4):233-41. PubMed ID: 11276417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Size-mediated tree transpiration along soil drainage gradients in a boreal black spruce forest wildfire chronosequence.
    Angstmann JL; Ewers BE; Kwon H
    Tree Physiol; 2012 May; 32(5):599-611. PubMed ID: 22539635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics of plains cottonwood (Populus deltoides) forests and historical landscape change along unchannelized segments of the Missouri River, USA.
    Dixon MD; Johnson WC; Scott ML; Bowen DE; Rabbe LA
    Environ Manage; 2012 May; 49(5):990-1008. PubMed ID: 22476667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How trees thrive in a dry climate: diurnal and seasonal hydrology and water relations in a riparian cottonwood grove.
    Phelan CA; Pearce DW; Franks CG; Zimmerman O; Tyree MT; Rood SB
    Tree Physiol; 2022 Jan; 42(1):99-113. PubMed ID: 34259309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decomposition of leaf litter from a native tree and an actinorhizal invasive across riparian habitats.
    Harner MJ; Crenshaw CL; Abelho M; Stursova M; Shah JJ; Sinsabaugh RL
    Ecol Appl; 2009 Jul; 19(5):1135-46. PubMed ID: 19688922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and compositional controls on transpiration in 40- and 450-year-old riparian forests in western Oregon, USA.
    Moore GW; Bond BJ; Jones JA; Phillips N; Meinzer FC
    Tree Physiol; 2004 May; 24(5):481-91. PubMed ID: 14996653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ecophysiology of riparian cottonwoods: stream flow dependency, water relations and restoration.
    Rood SB; Braatne JH; Hughes FM
    Tree Physiol; 2003 Nov; 23(16):1113-24. PubMed ID: 14522717
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Short- and long-term responses of riparian cottonwoods (Populus spp.) to flow diversion: Analysis of tree-ring radial growth and stable carbon isotopes.
    Schook DM; Friedman JM; Stricker CA; Csank AZ; Cooper DJ
    Sci Total Environ; 2020 Sep; 735():139523. PubMed ID: 32502819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Seasonal Dynamics of Water Use Strategy of Two Salix Shrubs in Alpine Sandy Land, Tibetan Plateau.
    Zhu Y; Wang G; Li R
    PLoS One; 2016; 11(5):e0156586. PubMed ID: 27243772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological and morphological response patterns of Populus deltoides to alluvial groundwater pumping.
    Cooper DJ; D'Amico DR; Scott ML
    Environ Manage; 2003 Feb; 31(2):215-26. PubMed ID: 12520377
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth, physiology, and phytoextraction potential of poplar and willow established in soils amended with heavy-metal contaminated, dredged river sediments.
    Pilipović A; Zalesny RS; Rončević S; Nikolić N; Orlović S; Beljin J; Katanić M
    J Environ Manage; 2019 Jun; 239():352-365. PubMed ID: 30921754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variation in carbon isotope composition among years in the riparian tree Populus fremontii.
    Leffler AJ; Evans AS
    Oecologia; 1999 May; 119(3):311-319. PubMed ID: 28307753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. USE OF NATIVE PLANTS FOR REMEDIATION OF TRICHLOROETHYLENE: I. DECIDUOUS TREES.
    Strycharz S; Newman L
    Int J Phytoremediation; 2009 Feb; 11(2):150-170. PubMed ID: 28133997
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple processes contribute to methane emission in a riparian cottonwood forest ecosystem.
    Flanagan LB; Nikkel DJ; Scherloski LM; Tkach RE; Smits KM; Selinger LB; Rood SB
    New Phytol; 2021 Feb; 229(4):1970-1982. PubMed ID: 33006137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flood regime and leaf fall determine soil inorganic nitrogen dynamics in semiarid riparian forests.
    Shah JJ; Dahm CN
    Ecol Appl; 2008 Apr; 18(3):771-88. PubMed ID: 18488634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Projected warming disrupts the synchrony of riparian seed release and snowmelt streamflow.
    Perry LG; Shafroth PB; Hay LE; Markstrom SL; Bock AR
    New Phytol; 2020 Jan; 225(2):693-712. PubMed ID: 31514239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cicada emergence in Southwestern riparian forest: influences of wildfire and vegetation composition.
    Smith DM; Kelly JF; Finch DM
    Ecol Appl; 2006 Aug; 16(4):1608-18. PubMed ID: 16937821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.