These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
91 related articles for article (PubMed ID: 20405811)
1. Analysis of muscles behaviour. Part I. The computational model of muscle. Wojnicz W; Wittbrodt E Acta Bioeng Biomech; 2009; 11(4):15-21. PubMed ID: 20405811 [TBL] [Abstract][Full Text] [Related]
2. Analysis of muscles' behaviour. Part II. The computational model of muscles' group acting on the elbow joint. Wojnicz W; Wittbrodt E Acta Bioeng Biomech; 2010; 12(1):3-10. PubMed ID: 20653318 [TBL] [Abstract][Full Text] [Related]
3. The necessity of physiological muscle parameters for computing the muscle forces: application to lower extremity loading during pedalling. Cadová M; Vilímek M Acta Bioeng Biomech; 2009; 11(3):59-64. PubMed ID: 20131752 [TBL] [Abstract][Full Text] [Related]
4. A hybrid static optimisation method to estimate muscle forces during muscle co-activation. Son J; Hwang S; Kim Y Comput Methods Biomech Biomed Engin; 2012; 15(3):249-54. PubMed ID: 21302162 [TBL] [Abstract][Full Text] [Related]
5. A constitutive model for smooth muscle including active tone and passive viscoelastic behaviour. Kroon M Math Med Biol; 2010 Jun; 27(2):129-55. PubMed ID: 19592484 [TBL] [Abstract][Full Text] [Related]
6. Viscoelastic wave propagation and rheologic properties of skeletal muscle. Truong XT Am J Physiol; 1974 Feb; 226(2):256-64. PubMed ID: 4544064 [No Abstract] [Full Text] [Related]
7. Foot and ankle forces during an automobile collision: the influence of muscles. Hardin EC; Su A; van den Bogert AJ J Biomech; 2004 May; 37(5):637-44. PubMed ID: 15046992 [TBL] [Abstract][Full Text] [Related]
8. Transmission of muscle force to fascia during exercise. Findley T; Chaudhry H; Dhar S J Bodyw Mov Ther; 2015 Jan; 19(1):119-23. PubMed ID: 25603751 [TBL] [Abstract][Full Text] [Related]
9. A continuum model for skeletal muscle contraction at homogeneous finite deformations. Sharifimajd B; Stålhand J Biomech Model Mechanobiol; 2013 Oct; 12(5):965-73. PubMed ID: 23184063 [TBL] [Abstract][Full Text] [Related]
10. The passive properties of muscle fibers are velocity dependent. Rehorn MR; Schroer AK; Blemker SS J Biomech; 2014 Feb; 47(3):687-93. PubMed ID: 24360198 [TBL] [Abstract][Full Text] [Related]
11. Musculotendon forces derived by different muscle models. Vilimek M Acta Bioeng Biomech; 2007; 9(2):41-7. PubMed ID: 18421942 [TBL] [Abstract][Full Text] [Related]
12. Application of muscle model to the musculoskeletal modeling. Wojnicz W; Wittbrodt E Acta Bioeng Biomech; 2012; 14(3):29-39. PubMed ID: 23140334 [TBL] [Abstract][Full Text] [Related]
13. Distribution of forces between synergistics and antagonistics muscles using an optimization criterion depending on muscle contraction behavior. Rengifo C; Aoustin Y; Plestan F; Chevallereau C J Biomech Eng; 2010 Apr; 132(4):041009. PubMed ID: 20387972 [TBL] [Abstract][Full Text] [Related]
14. Experimentally verified model of mechanomyograms recorded during single motor unit contractions. Kaczmarek P; Celichowski J; Kasiński A J Electromyogr Kinesiol; 2005 Dec; 15(6):617-30. PubMed ID: 16055349 [TBL] [Abstract][Full Text] [Related]
15. X-ray diffraction evidence for the extensibility of actin and myosin filaments during muscle contraction. Wakabayashi K; Sugimoto Y; Tanaka H; Ueno Y; Takezawa Y; Amemiya Y Biophys J; 1994 Dec; 67(6):2422-35. PubMed ID: 7779179 [TBL] [Abstract][Full Text] [Related]
16. A finite-element model for the mechanical analysis of skeletal muscles. Johansson T; Meier P; Blickhan R J Theor Biol; 2000 Sep; 206(1):131-49. PubMed ID: 10968943 [TBL] [Abstract][Full Text] [Related]
17. A mathematical model on stress-strain of the epimysium of skeletal muscles. Xi M; Yun G; Narsu B J Theor Biol; 2015 Jan; 365():175-80. PubMed ID: 25167791 [TBL] [Abstract][Full Text] [Related]