These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
310 related articles for article (PubMed ID: 20405859)
1. Functionalizable and ultrastable zwitterionic nanogels. Cheng G; Mi L; Cao Z; Xue H; Yu Q; Carr L; Jiang S Langmuir; 2010 May; 26(10):6883-6. PubMed ID: 20405859 [TBL] [Abstract][Full Text] [Related]
2. Zwitterionic nanogels crosslinked by fluorescent carbon dots for targeted drug delivery and simultaneous bioimaging. Li W; Liu Q; Zhang P; Liu L Acta Biomater; 2016 Aug; 40():254-262. PubMed ID: 27063492 [TBL] [Abstract][Full Text] [Related]
3. Synthesis and biodegradation of nanogels as delivery carriers for carbohydrate drugs. Oh JK; Siegwart DJ; Matyjaszewski K Biomacromolecules; 2007 Nov; 8(11):3326-31. PubMed ID: 17894465 [TBL] [Abstract][Full Text] [Related]
4. In situ preparation of gold nanoparticle-loaded lysozyme-dextran nanogels and applications for cell imaging and drug delivery. Cai H; Yao P Nanoscale; 2013 Apr; 5(7):2892-900. PubMed ID: 23447082 [TBL] [Abstract][Full Text] [Related]
5. In situ forming reduction-sensitive degradable nanogels for facile loading and triggered intracellular release of proteins. Chen W; Zheng M; Meng F; Cheng R; Deng C; Feijen J; Zhong Z Biomacromolecules; 2013 Apr; 14(4):1214-22. PubMed ID: 23477570 [TBL] [Abstract][Full Text] [Related]
6. Cellular uptake of functional nanogels prepared by inverse miniemulsion ATRP with encapsulated proteins, carbohydrates, and gold nanoparticles. Siegwart DJ; Srinivasan A; Bencherif SA; Karunanidhi A; Oh JK; Vaidya S; Jin R; Hollinger JO; Matyjaszewski K Biomacromolecules; 2009 Aug; 10(8):2300-9. PubMed ID: 19572639 [TBL] [Abstract][Full Text] [Related]
7. Lysozyme-dextran core-shell nanogels prepared via a green process. Li J; Yu S; Yao P; Jiang M Langmuir; 2008 Apr; 24(7):3486-92. PubMed ID: 18302424 [TBL] [Abstract][Full Text] [Related]
8. Carboxybetaine-Based Zwitterionic Polymer Nanogels with Long Blood Circulation for Cancer Therapy. Mai S; Yao X; Li C; Yin Z; Zhang M; Xu J; Diao Z; Yang W Biomacromolecules; 2023 May; 24(5):2392-2405. PubMed ID: 37061953 [TBL] [Abstract][Full Text] [Related]
9. Synthesis and characterization of novel dual-responsive nanogels and their application as drug delivery systems. Peng J; Qi T; Liao J; Fan M; Luo F; Li H; Qian Z Nanoscale; 2012 Apr; 4(8):2694-704. PubMed ID: 22426443 [TBL] [Abstract][Full Text] [Related]
10. Preparation of Biodegradable Oligo(lactide)s-Grafted Dextran Nanogels for Efficient Drug Delivery by Controlling Intracellular Traffic. Ohya Y; Takahashi A; Kuzuya A Int J Mol Sci; 2018 May; 19(6):. PubMed ID: 29848964 [TBL] [Abstract][Full Text] [Related]
11. A facile way to prepare functionalized dextran nanogels for conjugation of hemoglobin. Wei X; Xiong H; He S; Wang Y; Zhou D; Jing X; Huang Y Colloids Surf B Biointerfaces; 2017 Jul; 155():440-448. PubMed ID: 28463811 [TBL] [Abstract][Full Text] [Related]
12. Self-reinforced endocytoses of smart polypeptide nanogels for "on-demand" drug delivery. Ding J; Xu W; Zhang Y; Sun D; Xiao C; Liu D; Zhu X; Chen X J Control Release; 2013 Dec; 172(2):444-55. PubMed ID: 23742879 [TBL] [Abstract][Full Text] [Related]
14. iRGD-coupled responsive fluorescent nanogel for targeted drug delivery. Su S; Wang H; Liu X; Wu Y; Nie G Biomaterials; 2013 Apr; 34(13):3523-33. PubMed ID: 23410678 [TBL] [Abstract][Full Text] [Related]
15. Thermoresponsive bacterial cellulose whisker/poly(NIPAM-co-BMA) nanogel complexes: synthesis, characterization, and biological evaluation. Wu L; Zhou H; Sun HJ; Zhao Y; Yang X; Cheng SZ; Yang G Biomacromolecules; 2013 Apr; 14(4):1078-84. PubMed ID: 23458422 [TBL] [Abstract][Full Text] [Related]
16. Self-cross-linked polymer nanogels: a versatile nanoscopic drug delivery platform. Ryu JH; Chacko RT; Jiwpanich S; Bickerton S; Babu RP; Thayumanavan S J Am Chem Soc; 2010 Dec; 132(48):17227-35. PubMed ID: 21077674 [TBL] [Abstract][Full Text] [Related]
17. Glycol chitosan-based nanogel as a potential targetable carrier for siRNA. Pereira P; Morgado D; Crepet A; David L; Gama FM Macromol Biosci; 2013 Oct; 13(10):1369-78. PubMed ID: 23996912 [TBL] [Abstract][Full Text] [Related]
18. Efficient siRNA delivery based on PEGylated and partially quaternized polyamine nanogels: enhanced gene silencing activity by the cooperative effect of tertiary and quaternary amino groups in the core. Tamura A; Oishi M; Nagasaki Y J Control Release; 2010 Sep; 146(3):378-87. PubMed ID: 20621664 [TBL] [Abstract][Full Text] [Related]
19. Galactose-based Thermosensitive Nanogels for Targeted Drug Delivery of Iodoazomycin Arabinofuranoside (IAZA) for Theranostic Management of Hypoxic Hepatocellular Carcinoma. Quan S; Wang Y; Zhou A; Kumar P; Narain R Biomacromolecules; 2015 Jul; 16(7):1978-86. PubMed ID: 25996799 [TBL] [Abstract][Full Text] [Related]
20. Unraveling the effects of siRNA carrier systems on cell physiology: a multiparametric approach demonstrated on dextran nanogels. Soenen SJ; De Backer L; Manshian B; Doak S; Raemdonck K; Demeester J; Braeckmans K; De Smedt S Nanomedicine (Lond); 2014 Jan; 9(1):61-76. PubMed ID: 23755980 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]