These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 2040618)
1. Vibrational spectroscopy of bacteriorhodopsin mutants. Evidence that ASP-96 deprotonates during the M----N transition. Bousché O; Braiman M; He YW; Marti T; Khorana HG; Rothschild KJ J Biol Chem; 1991 Jun; 266(17):11063-7. PubMed ID: 2040618 [TBL] [Abstract][Full Text] [Related]
2. A redirected proton pathway in the bacteriorhodopsin mutant Tyr-57-->Asp. Evidence for proton translocation without Schiff base deprotonation. Sonar S; Marti T; Rath P; Fischer W; Coleman M; Nilsson A; Khorana HG; Rothschild KJ J Biol Chem; 1994 Nov; 269(46):28851-8. PubMed ID: 7961844 [TBL] [Abstract][Full Text] [Related]
3. Time-resolved Fourier transform infrared spectroscopy of the bacteriorhodopsin mutant Tyr-185-->Phe: Asp-96 reprotonates during O formation; Asp-85 and Asp-212 deprotonate during O decay. Bousché O; Sonar S; Krebs MP; Khorana HG; Rothschild KJ Photochem Photobiol; 1992 Dec; 56(6):1085-95. PubMed ID: 1337213 [TBL] [Abstract][Full Text] [Related]
4. Vibrational spectroscopy of bacteriorhodopsin mutants. Evidence for the interaction of aspartic acid 212 with tyrosine 185 and possible role in the proton pump mechanism. Rothschild KJ; Braiman MS; He YW; Marti T; Khorana HG J Biol Chem; 1990 Oct; 265(28):16985-91. PubMed ID: 2211604 [TBL] [Abstract][Full Text] [Related]
5. Hydrogen bonding interactions with the Schiff base of bacteriorhodopsin. Resonance Raman spectroscopy of the mutants D85N and D85A. Rath P; Marti T; Sonar S; Khorana HG; Rothschild KJ J Biol Chem; 1993 Aug; 268(24):17742-9. PubMed ID: 8349659 [TBL] [Abstract][Full Text] [Related]
6. Role of aspartate-96 in proton translocation by bacteriorhodopsin. Gerwert K; Hess B; Soppa J; Oesterhelt D Proc Natl Acad Sci U S A; 1989 Jul; 86(13):4943-7. PubMed ID: 2544884 [TBL] [Abstract][Full Text] [Related]
7. A linkage of the pKa's of asp-85 and glu-204 forms part of the reprotonation switch of bacteriorhodopsin. Richter HT; Brown LS; Needleman R; Lanyi JK Biochemistry; 1996 Apr; 35(13):4054-62. PubMed ID: 8672439 [TBL] [Abstract][Full Text] [Related]
8. Anion binding to the Schiff base of the bacteriorhodopsin mutants Asp-85----Asn/Asp-212----Asn and Arg-82----Gln/Asp-85----Asn/Asp-212----Asn. Marti T; Otto H; Rösselet SJ; Heyn MP; Khorana HG J Biol Chem; 1992 Aug; 267(24):16922-7. PubMed ID: 1512233 [TBL] [Abstract][Full Text] [Related]
9. Substitution of amino acids Asp-85, Asp-212, and Arg-82 in bacteriorhodopsin affects the proton release phase of the pump and the pK of the Schiff base. Otto H; Marti T; Holz M; Mogi T; Stern LJ; Engel F; Khorana HG; Heyn MP Proc Natl Acad Sci U S A; 1990 Feb; 87(3):1018-22. PubMed ID: 2153966 [TBL] [Abstract][Full Text] [Related]
10. Protein dynamics in the bacteriorhodopsin photocycle: submillisecond Fourier transform infrared spectra of the L, M, and N photointermediates. Braiman MS; Bousché O; Rothschild KJ Proc Natl Acad Sci U S A; 1991 Mar; 88(6):2388-92. PubMed ID: 2006176 [TBL] [Abstract][Full Text] [Related]
12. Proton transfer from Asp-96 to the bacteriorhodopsin Schiff base is caused by a decrease of the pKa of Asp-96 which follows a protein backbone conformational change. Cao Y; Váró G; Klinger AL; Czajkowsky DM; Braiman MS; Needleman R; Lanyi JK Biochemistry; 1993 Mar; 32(8):1981-90. PubMed ID: 8448157 [TBL] [Abstract][Full Text] [Related]
14. Fourier transform infrared spectra of a late intermediate of the bacteriorhodopsin photocycle suggest transient protonation of Asp-212. Dioumaev AK; Brown LS; Needleman R; Lanyi JK Biochemistry; 1999 Aug; 38(31):10070-8. PubMed ID: 10433714 [TBL] [Abstract][Full Text] [Related]
15. Protein changes associated with reprotonation of the Schiff base in the photocycle of Asp96-->Asn bacteriorhodopsin. The MN intermediate with unprotonated Schiff base but N-like protein structure. Sasaki J; Shichida Y; Lanyi JK; Maeda A J Biol Chem; 1992 Oct; 267(29):20782-6. PubMed ID: 1400394 [TBL] [Abstract][Full Text] [Related]
16. Aspartic acid-212 of bacteriorhodopsin is ionized in the M and N photocycle intermediates: an FTIR study on specifically 13C-labeled reconstituted purple membranes. Fahmy K; Weidlich O; Engelhard M; Sigrist H; Siebert F Biochemistry; 1993 Jun; 32(22):5862-9. PubMed ID: 8504106 [TBL] [Abstract][Full Text] [Related]
17. Structures of aspartic acid-96 in the L and N intermediates of bacteriorhodopsin: analysis by Fourier transform infrared spectroscopy. Maeda A; Sasaki J; Shichida Y; Yoshizawa T; Chang M; Ni B; Needleman R; Lanyi JK Biochemistry; 1992 May; 31(19):4684-90. PubMed ID: 1316157 [TBL] [Abstract][Full Text] [Related]
18. Vibrational spectroscopy of bacteriorhodopsin mutants. Evidence that Thr-46 and Thr-89 form part of a transient network of hydrogen bonds. Rothschild KJ; He YW; Sonar S; Marti T; Khorana HG J Biol Chem; 1992 Jan; 267(3):1615-22. PubMed ID: 1730706 [TBL] [Abstract][Full Text] [Related]
19. Complete identification of C = O stretching vibrational bands of protonated aspartic acid residues in the difference infrared spectra of M and N intermediates versus bacteriorhodopsin. Sasaki J; Lanyi JK; Needleman R; Yoshizawa T; Maeda A Biochemistry; 1994 Mar; 33(11):3178-84. PubMed ID: 8136352 [TBL] [Abstract][Full Text] [Related]
20. FTIR analysis of the SII540 intermediate of sensory rhodopsin II: Asp73 is the Schiff base proton acceptor. Bergo V; Spudich EN; Scott KL; Spudich JL; Rothschild KJ Biochemistry; 2000 Mar; 39(11):2823-30. PubMed ID: 10715101 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]