BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 2040635)

  • 1. Interactions between residues in the oncomodulin CD domain influence Ca2+ ion-binding affinity.
    Treviño CL; Boschi JM; Henzl MT
    J Biol Chem; 1991 Jun; 266(17):11301-8. PubMed ID: 2040635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Site-specific replacement of amino acid residues within the CD binding loop of rat oncomodulin.
    Palmisano WA; Treviño CL; Henzl MT
    J Biol Chem; 1990 Aug; 265(24):14450-6. PubMed ID: 2387865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interconversion of the CD and EF sites in oncomodulin. Influence on the Eu3+ 7F0-->5D0 excitation spectrum.
    Kauffman JF; Hapak RC; Henzl MT
    Biochemistry; 1995 Jan; 34(3):991-1000. PubMed ID: 7827057
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Site-specific substitution of glutamate for aspartate at position 59 of rat oncomodulin.
    Hapak RC; Lammers PJ; Palmisano WA; Birnbaum ER; Henzl MT
    J Biol Chem; 1989 Nov; 264(31):18751-60. PubMed ID: 2572594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oncomodulin and parvalbumin. A comparison of their interactions with europium ion.
    Henzl MT; Birnbaum ER
    J Biol Chem; 1988 Aug; 263(22):10674-80. PubMed ID: 3392035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interconversion of the ligand arrays in the CD and EF sites of oncomodulin. Influence on Ca2+-binding affinity.
    Henzl MT; Hapak RC; Likos JJ
    Biochemistry; 1998 Jun; 37(25):9101-11. PubMed ID: 9636056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Site-directed mutagenesis of rat α-parvalbumin: replacement of canonical CD-site residues with their non-consensus counterparts from rat β-parvalbumin.
    Henzl MT; Sirianni AG; Markus LA; Davis CM
    Biophys Chem; 2015 Feb; 197():25-39. PubMed ID: 25553513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Site-specific replacement of amino acid residues in the CD site of rat parvalbumin changes the metal specificity of this Ca2+/Mg(2+)-mixed site toward a Ca(2+)-specific site.
    Pauls TL; Durussel I; Clark ID; Szabo AG; Berchtold MW; Cox JA
    Eur J Biochem; 1996 Dec; 242(2):249-55. PubMed ID: 8973640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Remodeling of the AB site of rat parvalbumin and oncomodulin into a canonical EF-hand.
    Cox JA; Durussel I; Scott DJ; Berchtold MW
    Eur J Biochem; 1999 Sep; 264(3):790-9. PubMed ID: 10491125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chimeras of parvalbumin and oncomodulin involving exchange of the complete CD site show that the Ca2+/Mg2+ specificity is an intrinsic property of the site.
    Durussel I; Pauls TL; Cox JA; Berchtold MW
    Eur J Biochem; 1996 Dec; 242(2):256-63. PubMed ID: 8973641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Introduction of a fifth carboxylate ligand heightens the affinity of the oncomodulin CD and EF sites for Ca2+.
    Henzl MT; Hapak RC; Goodpasture EA
    Biochemistry; 1996 May; 35(18):5856-69. PubMed ID: 8639547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leucine 85 is an important determinant of divalent ion affinity in rat beta-parvalbumin (Oncomodulin).
    Henzl MT; Davis ME; Tan A
    Biochemistry; 2008 Dec; 47(51):13635-46. PubMed ID: 19075559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of terbium (III) luminescence enhancement in mutants of EF hand calcium binding proteins.
    Hogue CW; MacManus JP; Banville D; Szabo AG
    J Biol Chem; 1992 Jul; 267(19):13340-7. PubMed ID: 1618836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of oncomodulin refined at 1.85 A resolution. An example of extensive molecular aggregation via Ca2+.
    Ahmed FR; Przybylska M; Rose DR; Birnbaum GI; Pippy ME; MacManus JP
    J Mol Biol; 1990 Nov; 216(1):127-40. PubMed ID: 2231727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oncomodulin. 1H NMR and optical stopped-flow spectroscopic studies of its solution conformation and metal-binding properties.
    Williams TC; Corson DC; Sykes BD; MacManus JP
    J Biol Chem; 1987 May; 262(13):6248-56. PubMed ID: 3571255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of metal ion-induced conformational changes in parvalbumin and oncomodulin as probed by the intrinsic fluorescence of tryptophan 102.
    Hutnik CM; MacManus JP; Banville D; Szabo AG
    J Biol Chem; 1990 Jul; 265(20):11456-64. PubMed ID: 2365679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calcium- and magnesium-binding properties of oncomodulin. Direct binding studies and microcalorimetry.
    Cox JA; Milos M; MacManus JP
    J Biol Chem; 1990 Apr; 265(12):6633-7. PubMed ID: 2108959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Site-specific mutants of oncomodulin. 1H NMR and optical stopped-flow studies of the effect on the metal binding properties of an Asp59----Glu59 substitution in the calcium-specific site.
    Golden LF; Corson DC; Sykes BD; Banville D; MacManus JP
    J Biol Chem; 1989 Dec; 264(34):20314-9. PubMed ID: 2573599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solution structure of Ca2+-free rat beta-parvalbumin (oncomodulin).
    Henzl MT; Tanner JJ
    Protein Sci; 2007 Sep; 16(9):1914-26. PubMed ID: 17766386
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Eu3+ luminescence studies of oncomodulin. The origin of the pH-dependent behavior.
    Treviño CL; Palmisano WA; Birnbaum ER; Henzl MT
    J Biol Chem; 1990 Jun; 265(17):9694-700. PubMed ID: 2351666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.