These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 20406386)

  • 1. Did gene family expansions during the Eocene-Oligocene boundary climate cooling play a role in Pooideae adaptation to cool climates?
    Sandve SR; Fjellheim S
    Mol Ecol; 2010 May; 19(10):2075-88. PubMed ID: 20406386
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution of Cold Acclimation and Its Role in Niche Transition in the Temperate Grass Subfamily Pooideae.
    Schubert M; Grønvold L; Sandve SR; Hvidsten TR; Fjellheim S
    Plant Physiol; 2019 May; 180(1):404-419. PubMed ID: 30850470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phylogeny of Poaceae subfamily Pooideae based on chloroplast ndhF gene sequences.
    Catalán P; Kellogg EA; Olmstead RG
    Mol Phylogenet Evol; 1997 Oct; 8(2):150-66. PubMed ID: 9299221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for adaptive evolution of low-temperature stress response genes in a Pooideae grass ancestor.
    Vigeland MD; Spannagl M; Asp T; Paina C; Rudi H; Rognli OA; Fjellheim S; Sandve SR
    New Phytol; 2013 Sep; 199(4):1060-1068. PubMed ID: 23701123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phylotranscriptomics Resolves the Phylogeny of Pooideae and Uncovers Factors for Their Adaptive Evolution.
    Zhang L; Zhu X; Zhao Y; Guo J; Zhang T; Huang W; Huang J; Hu Y; Huang CH; Ma H
    Mol Biol Evol; 2022 Feb; 39(2):. PubMed ID: 35134207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution of the miR5200-FLOWERING LOCUS T flowering time regulon in the temperate grass subfamily Pooideae.
    McKeown M; Schubert M; Preston JC; Fjellheim S
    Mol Phylogenet Evol; 2017 Sep; 114():111-121. PubMed ID: 28603035
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tracking the evolution of a cold stress associated gene family in cold tolerant grasses.
    Sandve SR; Rudi H; Asp T; Rognli OA
    BMC Evol Biol; 2008 Sep; 8():245. PubMed ID: 18775065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fossil calibrations and molecular divergence time estimates in centrarchid fishes (Teleostei: Centrarchidae).
    Near TJ; Bolnick DI; Wainwright PC
    Evolution; 2005 Aug; 59(8):1768-82. PubMed ID: 16329246
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sixty million years in evolution of soft grain trait in grasses: emergence of the softness locus in the common ancestor of Pooideae and Ehrhartoideae, after their divergence from Panicoideae.
    Charles M; Tang H; Belcram H; Paterson A; Gornicki P; Chalhoub B
    Mol Biol Evol; 2009 Jul; 26(7):1651-61. PubMed ID: 19395588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative analyses reveal potential uses of Brachypodium distachyon as a model for cold stress responses in temperate grasses.
    Li C; Rudi H; Stockinger EJ; Cheng H; Cao M; Fox SE; Mockler TC; Westereng B; Fjellheim S; Rognli OA; Sandve SR
    BMC Plant Biol; 2012 May; 12():65. PubMed ID: 22569006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Duplication and adaptive evolution of the COR15 genes within the highly cold-tolerant Draba lineage (Brassicaceae).
    Zhou D; Zhou J; Meng L; Wang Q; Xie H; Guan Y; Ma Z; Zhong Y; Chen F; Liu J
    Gene; 2009 Jul; 441(1-2):36-44. PubMed ID: 18640249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ice recrystallization inhibition proteins (IRIPs) and freeze tolerance in the cryophilic Antarctic hair grass Deschampsia antarctica E. Desv.
    John UP; Polotnianka RM; Sivakumaran KA; Chew O; Mackin L; Kuiper MJ; Talbot JP; Nugent GD; Mautord J; Schrauf GE; Spangenberg GC
    Plant Cell Environ; 2009 Apr; 32(4):336-48. PubMed ID: 19143989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Historical biogeography, divergence times, and diversification patterns of bumble bees (Hymenoptera: Apidae: Bombus).
    Hines HM
    Syst Biol; 2008 Feb; 57(1):58-75. PubMed ID: 18275002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Successive evolutionary steps drove Pooideae grasses from tropical to temperate regions.
    Zhong J; Robbett M; Poire A; Preston JC
    New Phytol; 2018 Jan; 217(2):925-938. PubMed ID: 29091285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The CBF gene family in hexaploid wheat and its relationship to the phylogenetic complexity of cereal CBFs.
    Badawi M; Danyluk J; Boucho B; Houde M; Sarhan F
    Mol Genet Genomics; 2007 May; 277(5):533-54. PubMed ID: 17285309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [The frequencies of the low-molecular-weight alanine-rich cold shock proteins genes and variation of their primary structure in plants of temperate climate].
    Gimalov FR; Baĭmiev AKh; Baĭmiev AKh; Chemeris AV; Vakhitov VA
    Genetika; 2001 Jul; 37(7):1021-4. PubMed ID: 11558225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution and extinction of Afro-Arabian primates near the Eocene-Oligocene boundary.
    Seiffert ER
    Folia Primatol (Basel); 2007; 78(5-6):314-27. PubMed ID: 17855785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cooler winters as a possible cause of mass extinctions at the Eocene/Oligocene boundary.
    Ivany LC; Patterson WP; Lohmann KC
    Nature; 2000 Oct; 407(6806):887-90. PubMed ID: 11057663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The monosaccharide transporter gene family in Arabidopsis and rice: a history of duplications, adaptive evolution, and functional divergence.
    Johnson DA; Thomas MA
    Mol Biol Evol; 2007 Nov; 24(11):2412-23. PubMed ID: 17827171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tibetan plateau aridification linked to global cooling at the Eocene-Oligocene transition.
    Dupont-Nivet G; Krijgsman W; Langereis CG; Abels HA; Dai S; Fang X
    Nature; 2007 Feb; 445(7128):635-8. PubMed ID: 17287807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.