BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 20406434)

  • 1. Properties and identification of antibiotic drug targets.
    Bakheet TM; Doig AJ
    BMC Bioinformatics; 2010 Apr; 11():195. PubMed ID: 20406434
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Properties and identification of human protein drug targets.
    Bakheet TM; Doig AJ
    Bioinformatics; 2009 Feb; 25(4):451-7. PubMed ID: 19164304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of antibiotic resistance proteins from sequence-derived properties irrespective of sequence similarity.
    Zhang HL; Lin HH; Tao L; Ma XH; Dai JL; Jia J; Cao ZW
    Int J Antimicrob Agents; 2008 Sep; 32(3):221-6. PubMed ID: 18583101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein-protein complexes as targets for drug discovery against infectious diseases.
    Akhter Y; Hussain R
    Adv Protein Chem Struct Biol; 2020; 121():237-251. PubMed ID: 32312423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Properties of protein drug target classes.
    Bull SC; Doig AJ
    PLoS One; 2015; 10(3):e0117955. PubMed ID: 25822509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacterial fatty acid metabolism in modern antibiotic discovery.
    Yao J; Rock CO
    Biochim Biophys Acta Mol Cell Biol Lipids; 2017 Nov; 1862(11):1300-1309. PubMed ID: 27668701
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DnaK as Antibiotic Target: Hot Spot Residues Analysis for Differential Inhibition of the Bacterial Protein in Comparison with the Human HSP70.
    Chiappori F; Fumian M; Milanesi L; Merelli I
    PLoS One; 2015; 10(4):e0124563. PubMed ID: 25905464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Peptidomimetic Antibiotic Targets Outer Membrane Proteins and Disrupts Selectively the Outer Membrane in Escherichia coli.
    Urfer M; Bogdanovic J; Lo Monte F; Moehle K; Zerbe K; Omasits U; Ahrens CH; Pessi G; Eberl L; Robinson JA
    J Biol Chem; 2016 Jan; 291(4):1921-1932. PubMed ID: 26627837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure-based approaches to antibiotic drug discovery.
    Nicola G; Abagyan R
    Curr Protoc Microbiol; 2009 Feb; Chapter 17():Unit17.2. PubMed ID: 19235149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Threading the Needle: Small-Molecule Targeting of a Xenobiotic Receptor to Ablate Escherichia coli Polysaccharide Capsule Expression Without Altering Antibiotic Resistance.
    Arshad M; Goller CC; Pilla D; Schoenen FJ; Seed PC
    J Infect Dis; 2016 Apr; 213(8):1330-9. PubMed ID: 26671885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pathway-Directed Screen for Inhibitors of the Bacterial Cell Elongation Machinery.
    Buss JA; Baidin V; Welsh MA; Flores-Kim J; Cho H; Wood BM; Uehara T; Walker S; Kahne D; Bernhardt TG
    Antimicrob Agents Chemother; 2019 Jan; 63(1):. PubMed ID: 30323039
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipoprotein Signal Peptidase Inhibitors with Antibiotic Properties Identified through Design of a Robust In Vitro HT Platform.
    Kitamura S; Owensby A; Wall D; Wolan DW
    Cell Chem Biol; 2018 Mar; 25(3):301-308.e12. PubMed ID: 29337186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and antibody-therapeutic targeting of chloramphenicol-resistant outer membrane proteins in Escherichia coli.
    Li H; Lin XM; Wang SY; Peng XX
    J Proteome Res; 2007 Sep; 6(9):3628-36. PubMed ID: 17711325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The heme biosynthetic pathway of the obligate Wolbachia endosymbiont of Brugia malayi as a potential anti-filarial drug target.
    Wu B; Novelli J; Foster J; Vaisvila R; Conway L; Ingram J; Ganatra M; Rao AU; Hamza I; Slatko B
    PLoS Negl Trop Dis; 2009 Jul; 3(7):e475. PubMed ID: 19597542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A structural census of metabolic networks for E. coli.
    Saqi MA; Sternberg MJ
    J Mol Biol; 2001 Nov; 313(5):1195-206. PubMed ID: 11700074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Retrieval of Enterobacteriaceae drug targets using singular value decomposition.
    Silvério-Machado R; Couto BR; Dos Santos MA
    Bioinformatics; 2015 Apr; 31(8):1267-73. PubMed ID: 25480374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A shape-based 3-D scaffold hopping method and its application to a bacterial protein-protein interaction.
    Rush TS; Grant JA; Mosyak L; Nicholls A
    J Med Chem; 2005 Mar; 48(5):1489-95. PubMed ID: 15743191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring the relationship between hub proteins and drug targets based on GO and intrinsic disorder.
    Fu Y; Guo Y; Wang Y; Luo J; Pu X; Li M; Zhang Z
    Comput Biol Chem; 2015 Jun; 56():41-8. PubMed ID: 25854804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of bacteria-selective threonyl-tRNA synthetase substrate inhibitors by structure-based design.
    Teng M; Hilgers MT; Cunningham ML; Borchardt A; Locke JB; Abraham S; Haley G; Kwan BP; Hall C; Hough GW; Shaw KJ; Finn J
    J Med Chem; 2013 Feb; 56(4):1748-60. PubMed ID: 23362938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibitor discovery for the E. coli meningitis virulence factor IbeA from homology modeling and virtual screening.
    Xu X; Zhang L; Cai Y; Liu D; Shang Z; Ren Q; Li Q; Zhao W; Chen Y
    J Comput Aided Mol Des; 2020 Jan; 34(1):11-25. PubMed ID: 31792885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.