BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 20406677)

  • 1. Analysis of floral transcription factors from Lycoris longituba.
    He QL; Cui SJ; Gu JL; Zhang H; Wang MX; Zhou Y; Zhang L; Huang MR
    Genomics; 2010 Aug; 96(2):119-27. PubMed ID: 20406677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of transcription factors predominantly expressed in soybean flowers and characterization of GmSEP1 encoding a SEPALLATA1-like protein.
    Huang F; Chi Y; Gai J; Yu D
    Gene; 2009 Jun; 438(1-2):40-8. PubMed ID: 19289160
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-time RT-PCR profiling of over 1400 Arabidopsis transcription factors: unprecedented sensitivity reveals novel root- and shoot-specific genes.
    Czechowski T; Bari RP; Stitt M; Scheible WR; Udvardi MK
    Plant J; 2004 Apr; 38(2):366-79. PubMed ID: 15078338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative expression analysis of the ABC genes in Sophora tetraptera, a woody legume with an unusual sequence of floral organ development.
    Song J; Clemens J; Jameson PE
    J Exp Bot; 2008; 59(2):247-59. PubMed ID: 18238803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A fungal parasite regulates a putative female-suppressor gene homologous to maize tasselseed2 and causes induced hermaphroditism in male buffalograss.
    Chandra A; Huff DR
    Mol Plant Microbe Interact; 2010 Mar; 23(3):239-50. PubMed ID: 20121446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Genetic variations in trnL-F sequence and phylogenetic clustering of Lycoris species].
    Yuan JH; Sun S; Peng F; Feng X; Zheng YH; Xia B
    Zhongguo Zhong Yao Za Zhi; 2008 Jul; 33(13):1523-7. PubMed ID: 18837305
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and expression analysis of EST-based genes in the bud of Lycoris longituba.
    Cui Y; Zhang X; Zhou Y; Yu H; Tao L; Zhang L; Zhou J; Zhuge Q; Cai Y; Huang M
    Genomics Proteomics Bioinformatics; 2004 Feb; 2(1):43-6. PubMed ID: 15629042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. INCOMPOSITA: a MADS-box gene controlling prophyll development and floral meristem identity in Antirrhinum.
    Masiero S; Li MA; Will I; Hartmann U; Saedler H; Huijser P; Schwarz-Sommer Z; Sommer H
    Development; 2004 Dec; 131(23):5981-90. PubMed ID: 15539492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. C/D class MADS box genes from two monocots, orchid (Oncidium Gower Ramsey) and lily (Lilium longiflorum), exhibit different effects on floral transition and formation in Arabidopsis thaliana.
    Hsu HF; Hsieh WP; Chen MK; Chang YY; Yang CH
    Plant Cell Physiol; 2010 Jun; 51(6):1029-45. PubMed ID: 20395287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of suitable reference genes for gene expression studies in Lycoris longituba.
    Cui SJ; He QL; Chen Y; Huang MR
    J Genet; 2011 Dec; 90(3):503-6. PubMed ID: 22227941
    [No Abstract]   [Full Text] [Related]  

  • 11. cDNA cloning and mRNA expression of a FTZ-F1 homologue from the pituitary of the orange-spotted grouper, epinephelus coioides.
    Zhang W; Li X; Zhang Y; Zhang L; Tian J; Ma G
    J Exp Zool A Comp Exp Biol; 2004 Aug; 301(8):691-9. PubMed ID: 15286949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of flowering-related genes between early flowering trifoliate orange mutant and wild-type trifoliate orange (Poncirus trifoliata L. Raf.) by suppression subtraction hybridization (SSH) and macroarray.
    Zhang JZ; Li ZM; Yao JL; Hu CG
    Gene; 2009 Feb; 430(1-2):95-104. PubMed ID: 18930791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions among proteins of floral MADS-box genes in basal eudicots: implications for evolution of the regulatory network for flower development.
    Liu C; Zhang J; Zhang N; Shan H; Su K; Zhang J; Meng Z; Kong H; Chen Z
    Mol Biol Evol; 2010 Jul; 27(7):1598-611. PubMed ID: 20147438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of an efficient method for the isolation of factors involved in gene transcription during rice embryo development.
    Ye R; Yao QH; Xu ZH; Xue HW
    Plant J; 2004 Apr; 38(2):348-57. PubMed ID: 15078336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression analysis of transcription factors from the interaction between cacao and Moniliophthora perniciosa (Tricholomataceae).
    Lopes MA; Hora BT; Dias CV; Santos GC; Gramacho KP; Cascardo JC; Gesteira AS; Micheli F
    Genet Mol Res; 2010 Jul; 9(3):1279-97. PubMed ID: 20623454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein interactions of MADS box transcription factors involved in flowering in Lolium perenne.
    Ciannamea S; Kaufmann K; Frau M; Tonaco IA; Petersen K; Nielsen KK; Angenent GC; Immink RG
    J Exp Bot; 2006; 57(13):3419-31. PubMed ID: 17005923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation, sequence analysis, and expression studies of florally expressed cDNAs in Arabidopsis.
    Hu W; Wang Y; Bowers C; Ma H
    Plant Mol Biol; 2003 Nov; 53(4):545-63. PubMed ID: 15010618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Four DEF-like MADS box genes displayed distinct floral morphogenetic roles in Phalaenopsis orchid.
    Tsai WC; Kuoh CS; Chuang MH; Chen WH; Chen HH
    Plant Cell Physiol; 2004 Jul; 45(7):831-44. PubMed ID: 15295066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cloning and characterization of a novel PI-like MADS-box gene in Phalaenopsis orchid.
    Guo B; Zhang T; Shi J; Chen D; Shen D; Ming F
    DNA Seq; 2008 Jun; 19(3):332-9. PubMed ID: 17852362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional characterization of AP3, SOC1 and WUS homologues from citrus (Citrus sinensis).
    Tan FC; Swain SM
    Physiol Plant; 2007 Nov; 131(3):481-95. PubMed ID: 18251886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.