These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 20407202)

  • 1. VI.1. Gait analysis and synthesis: biomechanics, orthotics, prosthetics.
    Matjacić Z
    Stud Health Technol Inform; 2010; 152():323-42. PubMed ID: 20407202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alterations in muscle activation patterns during robotic-assisted walking.
    Hidler JM; Wall AE
    Clin Biomech (Bristol, Avon); 2005 Feb; 20(2):184-93. PubMed ID: 15621324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in gait and EMG when walking with the Masai Barefoot Technique.
    Romkes J; Rudmann C; Brunner R
    Clin Biomech (Bristol, Avon); 2006 Jan; 21(1):75-81. PubMed ID: 16169641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A three-dimensional biomechanical evaluation of quadriceps and hamstrings function using electrical stimulation.
    Hunter BV; Thelen DG; Dhaher YY
    IEEE Trans Neural Syst Rehabil Eng; 2009 Apr; 17(2):167-75. PubMed ID: 19193516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanical mechanism for transitions in phase and frequency of arm and leg swing during walking.
    Kubo M; Wagenaar RC; Saltzman E; Holt KG
    Biol Cybern; 2004 Aug; 91(2):91-8. PubMed ID: 15351887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Muscle length and lengthening velocity in voluntary crouch gait.
    van der Krogt MM; Doorenbosch CA; Harlaar J
    Gait Posture; 2007 Oct; 26(4):532-8. PubMed ID: 17208000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accuracy of generic musculoskeletal models in predicting the functional roles of muscles in human gait.
    Correa TA; Baker R; Graham HK; Pandy MG
    J Biomech; 2011 Jul; 44(11):2096-105. PubMed ID: 21703627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robust and efficient walking with spring-like legs.
    Rummel J; Blum Y; Seyfarth A
    Bioinspir Biomim; 2010 Dec; 5(4):046004. PubMed ID: 21079285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A muscle-reflex model that encodes principles of legged mechanics produces human walking dynamics and muscle activities.
    Geyer H; Herr H
    IEEE Trans Neural Syst Rehabil Eng; 2010 Jun; 18(3):263-73. PubMed ID: 20378480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of manipulation of the center of pressure of the foot during gait on the activation patterns of the lower limb musculature.
    Goryachev Y; Debbi EM; Haim A; Wolf A
    J Electromyogr Kinesiol; 2011 Apr; 21(2):333-9. PubMed ID: 21215655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differences in muscle function during walking and running at the same speed.
    Sasaki K; Neptune RR
    J Biomech; 2006; 39(11):2005-13. PubMed ID: 16129444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Muscle activity during the active straight leg raise (ASLR), and the effects of a pelvic belt on the ASLR and on treadmill walking.
    Hu H; Meijer OG; van Dieën JH; Hodges PW; Bruijn SM; Strijers RL; Nanayakkara PW; van Royen BJ; Wu W; Xia C
    J Biomech; 2010 Feb; 43(3):532-9. PubMed ID: 19883914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Motor patterns during walking on a slippery walkway.
    Cappellini G; Ivanenko YP; Dominici N; Poppele RE; Lacquaniti F
    J Neurophysiol; 2010 Feb; 103(2):746-60. PubMed ID: 19955283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of the lower leg during walking: a versatile model of the foot.
    Stefanovic F; Popovic DB
    IEEE Trans Neural Syst Rehabil Eng; 2009 Feb; 17(1):63-9. PubMed ID: 19211325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gait analysis and synthesis: Biomechanics, orthotics, prosthetics.
    Matjacić Z
    Technol Health Care; 2009; 17(5-6):445-61. PubMed ID: 20051624
    [No Abstract]   [Full Text] [Related]  

  • 16. Bipedal walking and running with spring-like biarticular muscles.
    Iida F; Rummel J; Seyfarth A
    J Biomech; 2008; 41(3):656-67. PubMed ID: 17996242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characteristics of instructed and uninstructed interpersonal coordination while walking side-by-side.
    van Ulzen NR; Lamoth CJ; Daffertshofer A; Semin GR; Beek PJ
    Neurosci Lett; 2008 Feb; 432(2):88-93. PubMed ID: 18242846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation and characterization of rat bipedal walking models established by a training program.
    Wada N; Toba Y; Iwamoto W; Goto M; Miyata H; Mori F; Morita F
    Brain Res; 2008 Dec; 1243():70-7. PubMed ID: 18835381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leg stiffness increases with speed to modulate gait frequency and propulsion energy.
    Kim S; Park S
    J Biomech; 2011 Apr; 44(7):1253-8. PubMed ID: 21396646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ankle plantar flexor force production is an important determinant of the preferred walk-to-run transition speed.
    Neptune RR; Sasaki K
    J Exp Biol; 2005 Mar; 208(Pt 5):799-808. PubMed ID: 15755878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.