These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

450 related articles for article (PubMed ID: 20407204)

  • 1. VI.3. Rehabilitation robotics.
    Munih M; Bajd T
    Stud Health Technol Inform; 2010; 152():353-66. PubMed ID: 20407204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rehabilitation robotics.
    Munih M; Bajd T
    Technol Health Care; 2011; 19(6):483-95. PubMed ID: 22129949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coordinated control of assistive robotic devices for activities of daily living tasks.
    Erol D; Sarkar N
    IEEE Trans Neural Syst Rehabil Eng; 2008 Jun; 16(3):278-85. PubMed ID: 18586607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robotic assisted rehabilitation in Virtual Reality with the L-EXOS.
    Frisoli A; Bergamasco M; Carboncini MC; Rossi B
    Stud Health Technol Inform; 2009; 145():40-54. PubMed ID: 19592785
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A perspective on intelligent devices and environments in medical rehabilitation.
    Cooper RA; Dicianno BE; Brewer B; LoPresti E; Ding D; Simpson R; Grindle G; Wang H
    Med Eng Phys; 2008 Dec; 30(10):1387-98. PubMed ID: 18993108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and validation of a rehabilitation robotic exoskeleton for tremor assessment and suppression.
    Rocon E; Belda-Lois JM; Ruiz AF; Manto M; Moreno JC; Pons JL
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):367-78. PubMed ID: 17894269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robotic personal aids for mobility and monitoring for the elderly.
    Spenko M; Yu H; Dubowsky S
    IEEE Trans Neural Syst Rehabil Eng; 2006 Sep; 14(3):344-51. PubMed ID: 17009494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A rehabilitation robot with force-position hybrid fuzzy controller: hybrid fuzzy control of rehabilitation robot.
    Ju MS; Lin CC; Lin DH; Hwang IS; Chen SM
    IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):349-58. PubMed ID: 16200758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A mechatronic device for the rehabilitation of ankle motor function.
    Bucca G; Bezzolato A; Bruni S; Molteni F
    J Biomech Eng; 2009 Dec; 131(12):125001. PubMed ID: 20524738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimizing compliant, model-based robotic assistance to promote neurorehabilitation.
    Wolbrecht ET; Chan V; Reinkensmeyer DJ; Bobrow JE
    IEEE Trans Neural Syst Rehabil Eng; 2008 Jun; 16(3):286-97. PubMed ID: 18586608
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control system design of a 3-DOF upper limbs rehabilitation robot.
    Denève A; Moughamir S; Afilal L; Zaytoon J
    Comput Methods Programs Biomed; 2008 Feb; 89(2):202-14. PubMed ID: 17881080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinematic design to improve ergonomics in human machine interaction.
    Schiele A; van der Helm FC
    IEEE Trans Neural Syst Rehabil Eng; 2006 Dec; 14(4):456-69. PubMed ID: 17190037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. School-based use of a robotic arm system by children with disabilities.
    Cook AM; Bentz B; Harbottle N; Lynch C; Miller B
    IEEE Trans Neural Syst Rehabil Eng; 2005 Dec; 13(4):452-60. PubMed ID: 16425826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Standing-up robot: an assistive rehabilitative device for training and assessment.
    Kamnik R; Bajd T
    J Med Eng Technol; 2004; 28(2):74-80. PubMed ID: 14965861
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Patient-cooperative strategies for robot-aided treadmill training: first experimental results.
    Riener R; Lünenburger L; Jezernik S; Anderschitz M; Colombo G; Dietz V
    IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):380-94. PubMed ID: 16200761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel method for automatic treadmill speed adaptation.
    von Zitzewitz J; Bernhardt M; Riener R
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):401-9. PubMed ID: 17894272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid assistive systems for rehabilitation: lessons learned from functional electrical therapy in hemiplegics.
    Popović DB; Popović MB
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2146-9. PubMed ID: 17946941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robot-aided neurorehabilitation: a robot for wrist rehabilitation.
    Krebs HI; Volpe BT; Williams D; Celestino J; Charles SK; Lynch D; Hogan N
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):327-35. PubMed ID: 17894265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A robotic device for studying rodent locomotion after spinal cord injury.
    Nessler JA; Timoszyk W; Merlo M; Emken JL; Minakata K; Roy RR; de Leon RD; Edgerton VR; Reinkensmeyer DJ
    IEEE Trans Neural Syst Rehabil Eng; 2005 Dec; 13(4):497-506. PubMed ID: 16425832
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Research and development of compact wrist rehabilitation robot system.
    Yamamoto I; Inagawa N; Matsui M; Hachisuka K; Wada F; Hachisuka A
    Biomed Mater Eng; 2014; 24(1):123-8. PubMed ID: 24211891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.