These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 20407527)

  • 1. Differential absorption lidar technique for measurement of the atmospheric pressure profile.
    Korb CL; Weng CY
    Appl Opt; 1983 Dec; 22(23):3759-70. PubMed ID: 20407527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Airborne and ground based lidar measurements of the atmospheric pressure profile.
    Korb CL; Schwemmer GK; Dombrowski M; Weng CY
    Appl Opt; 1989 Aug; 28(15):3015-20. PubMed ID: 20555644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Edge technique: theory and application to the lidar measurement of atmospheric wind.
    Korb CL; Gentry BM; Weng CY
    Appl Opt; 1992 Jul; 31(21):4202-13. PubMed ID: 20725404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Technique for remotely measuring surface pressure from a satellite using a multicolor laser ranging system.
    Gardner CS
    Appl Opt; 1979 Sep; 18(18):3184-9. PubMed ID: 20212826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Water vapor differential absorption lidar development and evaluation.
    Browell EV; Wilkerson TD; McIlrath TJ
    Appl Opt; 1979 Oct; 18(20):3474-83. PubMed ID: 20216627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of differential absorption lidar from the space shuttle.
    Remsberg EE; Gordley LL
    Appl Opt; 1978 Feb; 17(4):624-30. PubMed ID: 20197838
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shuttle lidar resonance fluorescence investigations. 2: Analysis of thermospheric Mg(+) measurements.
    Yeh SD; Browell EV
    Appl Opt; 1982 Jul; 21(13):2373-80. PubMed ID: 20396038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Error reduction methods for integrated-path differential-absorption lidar measurements.
    Chen JR; Numata K; Wu ST
    Opt Express; 2012 Jul; 20(14):15589-609. PubMed ID: 22772254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous remote measurements of atmospheric temperature and humidity using a continuously tunable IR lidar.
    Endemann M; Byer RL
    Appl Opt; 1981 Sep; 20(18):3211-7. PubMed ID: 20333123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature sensitivity of differential absorption lidar measurements of water vapor in the 720-nm region.
    Browell EV; Ismail S; Grossmann BE
    Appl Opt; 1991 Apr; 30(12):1517-24. PubMed ID: 20700314
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Airborne remote sensing of tropospheric water vapor with a near-infrared differential absorption lidar system.
    Ehret G; Kiemle C; Renger W; Simmet G
    Appl Opt; 1993 Aug; 32(24):4534-51. PubMed ID: 20830116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of an airborne triple-pulsed 2 μm IPDA lidar for simultaneous and independent atmospheric water vapor and carbon dioxide measurements.
    Refaat TF; Singh UN; Yu J; Petros M; Ismail S; Kavaya MJ; Davis KJ
    Appl Opt; 2015 Feb; 54(6):1387-98. PubMed ID: 25968204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Raman shifting of KrF laser radiation for tropospheric ozone measurements.
    Grant WB; Browell EV; Higdon NS; Ismail S
    Appl Opt; 1991 Jun; 30(18):2628-33. PubMed ID: 20700252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing the temperature dependence of narrow-band Raman water vapor lidar measurements: a practical approach.
    Whiteman DN; Venable DD; Walker M; Cadirola M; Sakai T; Veselovskii I
    Appl Opt; 2013 Aug; 52(22):5376-84. PubMed ID: 23913054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atmospheric water vapor differential absorption measurements on vertical paths with a CO2 lidar.
    Baker PW
    Appl Opt; 1983 Aug; 22(15):2257-64. PubMed ID: 18196122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-spectral-resolution fluorescence light detection and ranging for mesospheric sodium temperature measurements.
    She CY; Yu JR; Latifi H; Bills RE
    Appl Opt; 1992 Apr; 31(12):2095-106. PubMed ID: 20720864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intrapulse temporal and wavelength shifts of a high-power 2.1-µm Ho:YAG laser and their potential influence on atmospheric lidar measurements.
    Vaidyanathan M; Killinger DK
    Appl Opt; 1994 Nov; 33(33):7747-53. PubMed ID: 20962985
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of differential spectral reflectance on DIAL measurements using topographic targets.
    Grant WB
    Appl Opt; 1982 Jul; 21(13):2390-4. PubMed ID: 20396041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mesure de la pression et de la température atmosphériques par absorption différentielle lidar: influence de la largeur d'émission laser.
    Megie G
    Appl Opt; 1980 Jan; 19(1):34-43. PubMed ID: 20216791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Operating wavelengths optimization for a spaceborne lidar measuring atmospheric CO2.
    Caron J; Durand Y
    Appl Opt; 2009 Oct; 48(28):5413-22. PubMed ID: 19798383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.