These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

527 related articles for article (PubMed ID: 20407700)

  • 1. Synthesis and characterization of RuO(2)/poly(3,4-ethylenedioxythiophene) composite nanotubes for supercapacitors.
    Liu R; Duay J; Lane T; Bok Lee S
    Phys Chem Chem Phys; 2010 May; 12(17):4309-16. PubMed ID: 20407700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Poly(3,4-ethylenedioxythiophene) nanotubes as electrode materials for a high-powered supercapacitor.
    Liu R; Cho SI; Lee SB
    Nanotechnology; 2008 May; 19(21):215710. PubMed ID: 21730589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Supercapacitive properties of PEDOT and carbon colloidal microspheres.
    Kelly TL; Yano K; Wolf MO
    ACS Appl Mater Interfaces; 2009 Nov; 1(11):2536-43. PubMed ID: 20356124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Poly(3,4-ethylenedioxythiophene)-multiwalled carbon nanotube composite films: structure-directed amplified electrochromic response and improved redox activity.
    Bhandari S; Deepa M; Srivastava AK; Joshi AG; Kant R
    J Phys Chem B; 2009 Jul; 113(28):9416-28. PubMed ID: 19545156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast electrochemistry of conductive polymer nanotubes: synthesis, mechanism, and application.
    Cho SI; Lee SB
    Acc Chem Res; 2008 Jun; 41(6):699-707. PubMed ID: 18505276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of Supercapacitors on Flexible Substrates with Electrodeposited PEDOT/Graphene Composites.
    Lehtimäki S; Suominen M; Damlin P; Tuukkanen S; Kvarnström C; Lupo D
    ACS Appl Mater Interfaces; 2015 Oct; 7(40):22137-47. PubMed ID: 26381462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MnO2/TiN heterogeneous nanostructure design for electrochemical energy storage.
    Sherrill SA; Duay J; Gui Z; Banerjee P; Rubloff GW; Lee SB
    Phys Chem Chem Phys; 2011 Sep; 13(33):15221-6. PubMed ID: 21776451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polyaniline nanowire array encapsulated in titania nanotubes as a superior electrode for supercapacitors.
    Xie K; Li J; Lai Y; Zhang Z; Liu Y; Zhang G; Huang H
    Nanoscale; 2011 May; 3(5):2202-7. PubMed ID: 21455534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlled electrochemical synthesis of conductive polymer nanotube structures.
    Xiao R; Cho SI; Liu R; Lee SB
    J Am Chem Soc; 2007 Apr; 129(14):4483-9. PubMed ID: 17362011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile coating of manganese oxide on tin oxide nanowires with high-performance capacitive behavior.
    Yan J; Khoo E; Sumboja A; Lee PS
    ACS Nano; 2010 Jul; 4(7):4247-55. PubMed ID: 20593844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and characterization of aligned carbon nanotube-ruthenium oxide nanocomposites for supercapacitors.
    Ye JS; Cui HF; Liu X; Lim TM; Zhang WD; Sheu FS
    Small; 2005 May; 1(5):560-5. PubMed ID: 17193486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox exchange induced MnO2 nanoparticle enrichment in poly(3,4-ethylenedioxythiophene) nanowires for electrochemical energy storage.
    Liu R; Duay J; Lee SB
    ACS Nano; 2010 Jul; 4(7):4299-307. PubMed ID: 20590128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High rate performance of flexible pseudocapacitors fabricated using ionic-liquid-based proton conducting polymer electrolyte with poly(3, 4-ethylenedioxythiophene):poly(styrene sulfonate) and its hydrous ruthenium oxide composite electrodes.
    Sellam ; Hashmi SA
    ACS Appl Mater Interfaces; 2013 May; 5(9):3875-83. PubMed ID: 23548059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hierarchically structured Ni(3)S(2)/carbon nanotube composites as high performance cathode materials for asymmetric supercapacitors.
    Dai CS; Chien PY; Lin JY; Chou SW; Wu WK; Li PH; Wu KY; Lin TW
    ACS Appl Mater Interfaces; 2013 Nov; 5(22):12168-74. PubMed ID: 24191729
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of temperature on the capacitance of carbon nanotube supercapacitors.
    Masarapu C; Zeng HF; Hung KH; Wei B
    ACS Nano; 2009 Aug; 3(8):2199-206. PubMed ID: 19583250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-performance supercapacitors based on vertically aligned carbon nanotubes and nonaqueous electrolytes.
    Kim B; Chung H; Kim W
    Nanotechnology; 2012 Apr; 23(15):155401. PubMed ID: 22437007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly Flexible and Conductive Cellulose-Mediated PEDOT:PSS/MWCNT Composite Films for Supercapacitor Electrodes.
    Zhao D; Zhang Q; Chen W; Yi X; Liu S; Wang Q; Liu Y; Li J; Li X; Yu H
    ACS Appl Mater Interfaces; 2017 Apr; 9(15):13213-13222. PubMed ID: 28349683
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrous RuO(2)-Carbon Nanofiber electrodes with high mass and electrode-specific capacitance for efficient energy storage.
    Vellacheri R; Pillai VK; Kurungot S
    Nanoscale; 2012 Feb; 4(3):890-6. PubMed ID: 22159715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MnO2 nanolayers on highly conductive TiO(0.54)N(0.46) nanotubes for supercapacitor electrodes with high power density and cyclic stability.
    Wang Z; Li Z; Feng J; Yan S; Luo W; Liu J; Yu T; Zou Z
    Phys Chem Chem Phys; 2014 May; 16(18):8521-8. PubMed ID: 24668150
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An electrochemical capacitor electrode based on porous carbon spheres hybrided with polyaniline and nanoscale ruthenium oxide.
    Zhao D; Guo X; Gao Y; Gao F
    ACS Appl Mater Interfaces; 2012 Oct; 4(10):5583-9. PubMed ID: 22988980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.