These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 20407703)
1. Bending of purple membranes in dependence on the pH analyzed by AFM and single molecule force spectroscopy. Baumann RP; Schranz M; Hampp N Phys Chem Chem Phys; 2010 May; 12(17):4329-35. PubMed ID: 20407703 [TBL] [Abstract][Full Text] [Related]
2. pH-dependent bending in and out of purple membranes comprising BR-D85T. Baumann RP; Eussner J; Hampp N Phys Chem Chem Phys; 2011 Dec; 13(48):21375-82. PubMed ID: 22033510 [TBL] [Abstract][Full Text] [Related]
3. Curvature of purple membranes comprising permanently wedge-shaped bacteriorhodopsin molecules is regulated by lipid content. Rhinow D; Hampp N J Phys Chem B; 2010 Jan; 114(1):549-56. PubMed ID: 19908872 [TBL] [Abstract][Full Text] [Related]
4. Crystallinity of purple membranes comprising the chloride-pumping bacteriorhodopsin variant D85T and its modulation by pH and salinity. Rhinow D; Chizhik I; Baumann RP; Noll F; Hampp N J Phys Chem B; 2010 Nov; 114(46):15424-8. PubMed ID: 21033713 [TBL] [Abstract][Full Text] [Related]
5. Light- and pH-dependent conformational changes in protein structure induce strong bending of purple membranes--active membranes studied by cryo-SEM. Rhinow D; Hampp NA J Phys Chem B; 2008 Oct; 112(41):13116-20. PubMed ID: 18712918 [TBL] [Abstract][Full Text] [Related]
6. Dynamics of bacteriorhodopsin in solid-supported purple membranes studied with tapping-mode atomic force microscopy. Schranz M; Baumann RP; Rhinow D; Hampp N J Phys Chem B; 2010 Jul; 114(27):9047-53. PubMed ID: 20509702 [TBL] [Abstract][Full Text] [Related]
7. Different interactions between the two sides of purple membrane with atomic force microscope tip. Zhong S; Li H; Chen XY; Cao EH; Jin G; Hu KS Langmuir; 2007 Apr; 23(8):4486-93. PubMed ID: 17358085 [TBL] [Abstract][Full Text] [Related]
8. Structural changes of purple membrane and bacteriorhodopsin during its denaturation induced by high pH. Li H; Chen DL; Zhong S; Xu B; Han BS; Hu KS J Phys Chem B; 2005 Jun; 109(22):11273-8. PubMed ID: 16852376 [TBL] [Abstract][Full Text] [Related]
9. Unfolding barriers in bacteriorhodopsin probed from the cytoplasmic and the extracellular side by AFM. Kessler M; Gaub HE Structure; 2006 Mar; 14(3):521-7. PubMed ID: 16531236 [TBL] [Abstract][Full Text] [Related]
10. Intramembrane substitutions in helix D of bacteriorhodopsin disrupt the purple membrane. Krebs MP; Li W; Halambeck TP J Mol Biol; 1997 Mar; 267(1):172-83. PubMed ID: 9096216 [TBL] [Abstract][Full Text] [Related]
11. Oriented purple membrane monolayers covalently attached to gold by multiple thiole linkages analyzed by single molecule force spectroscopy. Schranz M; Noll F; Hampp N Langmuir; 2007 Oct; 23(22):11134-8. PubMed ID: 17887782 [TBL] [Abstract][Full Text] [Related]
12. Role of trimer-trimer interaction of bacteriorhodopsin studied by optical spectroscopy and high-speed atomic force microscopy. Yamashita H; Inoue K; Shibata M; Uchihashi T; Sasaki J; Kandori H; Ando T J Struct Biol; 2013 Oct; 184(1):2-11. PubMed ID: 23462099 [TBL] [Abstract][Full Text] [Related]
13. Imaging of reconstituted purple membranes by atomic force microscopy. Kim DT; Blanch HW; Radke CJ Colloids Surf B Biointerfaces; 2005 Apr; 41(4):263-76. PubMed ID: 15748822 [TBL] [Abstract][Full Text] [Related]
14. Surface structures of native bacteriorhodopsin depend on the molecular packing arrangement in the membrane. Müller DJ; Sass HJ; Müller SA; Büldt G; Engel A J Mol Biol; 1999 Feb; 285(5):1903-9. PubMed ID: 9925773 [TBL] [Abstract][Full Text] [Related]
15. Role of arginine-82 in fast proton release during the bacteriorhodopsin photocycle: a time-resolved FT-IR study of purple membranes containing 15N-labeled arginine. Xiao Y; Hutson MS; Belenky M; Herzfeld J; Braiman MS Biochemistry; 2004 Oct; 43(40):12809-18. PubMed ID: 15461453 [TBL] [Abstract][Full Text] [Related]
16. Charting the surfaces of the purple membrane. Heymann JB; Müller DJ; Landau EM; Rosenbusch JP; Pebay-Peyroula E; Büldt G; Engel A J Struct Biol; 1999 Dec; 128(3):243-9. PubMed ID: 10633063 [TBL] [Abstract][Full Text] [Related]
17. Reversible loss of crystallinity on photobleaching purple membrane in the presence of hydroxylamine. Möller C; Büldt G; Dencher NA; Engel A; Müller DJ J Mol Biol; 2000 Aug; 301(4):869-79. PubMed ID: 10966792 [TBL] [Abstract][Full Text] [Related]
18. Fabrication of oriented poly-L-lysine/bacteriorhodopsin-embedded purple membrane multilayer structure for enhanced photoelectric response. Li R; Cui X; Hu W; Lu Z; Li CM J Colloid Interface Sci; 2010 Apr; 344(1):150-7. PubMed ID: 20056227 [TBL] [Abstract][Full Text] [Related]
19. Tip-Enhanced Infrared Difference-Nanospectroscopy of the Proton Pump Activity of Bacteriorhodopsin in Single Purple Membrane Patches. Giliberti V; Polito R; Ritter E; Broser M; Hegemann P; Puskar L; Schade U; Zanetti-Polzi L; Daidone I; Corni S; Rusconi F; Biagioni P; Baldassarre L; Ortolani M Nano Lett; 2019 May; 19(5):3104-3114. PubMed ID: 30950626 [TBL] [Abstract][Full Text] [Related]
20. Dependence of purple membrane bump curvature on pH and ionic strength analyzed using atomic force microscopy combined with solvent exchange. Yokoyama Y; Yamada K; Higashi Y; Ozaki S; Wang H; Koito N; Watanabe N; Sonoyama M; Mitaku S J Phys Chem B; 2014 Aug; 118(31):9322-8. PubMed ID: 25019409 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]