These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 20407725)
1. A combinatorial approach toward fabrication of surface-adsorbed metal nanoparticles for investigation of an enzyme reaction. Takei H; Yamaguchi T Phys Chem Chem Phys; 2010 May; 12(17):4505-14. PubMed ID: 20407725 [TBL] [Abstract][Full Text] [Related]
3. Laser-ablation-induced synthesis of SiO2-capped noble metal nanoparticles in a single step. Jiménez E; Abderrafi K; Abargues R; Valdés JL; Martínez-Pastor JP Langmuir; 2010 May; 26(10):7458-63. PubMed ID: 20187628 [TBL] [Abstract][Full Text] [Related]
4. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. Lee KS; El-Sayed MA J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772 [TBL] [Abstract][Full Text] [Related]
5. Simple and rapid colorimetric enzyme sensing assays using non-crosslinking gold nanoparticle aggregation. Zhao W; Chiuman W; Lam JC; Brook MA; Li Y Chem Commun (Camb); 2007 Sep; (36):3729-31. PubMed ID: 17851609 [TBL] [Abstract][Full Text] [Related]
6. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Jain PK; Huang X; El-Sayed IH; El-Sayed MA Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366 [TBL] [Abstract][Full Text] [Related]
7. Design of SERS-encoded, submicron, hollow particles through confined growth of encapsulated metal nanoparticles. Sanles-Sobrido M; Exner W; Rodríguez-Lorenzo L; Rodríguez-González B; Correa-Duarte MA; Alvarez-Puebla RA; Liz-Marzán LM J Am Chem Soc; 2009 Feb; 131(7):2699-705. PubMed ID: 19182903 [TBL] [Abstract][Full Text] [Related]
8. Stoichiometric functionalization of gold nanoparticles in solution through a free radical polymerization approach. Krüger C; Agarwal S; Greiner A J Am Chem Soc; 2008 Mar; 130(9):2710-1. PubMed ID: 18254626 [TBL] [Abstract][Full Text] [Related]
9. Facile preparation of highly-scattering metal nanoparticle-coated polymer microbeads and their surface plasmon resonance. Lee JH; Mahmoud MA; Sitterle V; Sitterle J; Meredith JC J Am Chem Soc; 2009 Apr; 131(14):5048-9. PubMed ID: 19317467 [TBL] [Abstract][Full Text] [Related]
10. Colorimetric response to mercury-induced abstraction of triethylene glycol ligands from a gold nanoparticle surface. Hirayama T; Taki M; Kashiwagi Y; Nakamoto M; Kunishita A; Itoh S; Yamamoto Y Dalton Trans; 2008 Sep; (35):4705-7. PubMed ID: 18728875 [TBL] [Abstract][Full Text] [Related]
11. Influence of particle size on the binding activity of proteins adsorbed onto gold nanoparticles. Kaur K; Forrest JA Langmuir; 2012 Feb; 28(5):2736-44. PubMed ID: 22132998 [TBL] [Abstract][Full Text] [Related]
12. Computer simulation of the assembly of gold nanoparticles on DNA fragments via electrostatic interaction. Komarov PV; Zherenkova LV; Khalatur PG J Chem Phys; 2008 Mar; 128(12):124909. PubMed ID: 18376975 [TBL] [Abstract][Full Text] [Related]
13. Fabrication of color changeable polystyrene spheres decorated by gold nanoparticles and their label-free biosensing. Xia Y; Lu W; Jiang L Nanotechnology; 2010 Feb; 21(8):85501. PubMed ID: 20097982 [TBL] [Abstract][Full Text] [Related]
14. Silica-void-gold nanoparticles: temporally stable surface-enhanced Raman scattering substrates. Roca M; Haes AJ J Am Chem Soc; 2008 Oct; 130(43):14273-9. PubMed ID: 18831552 [TBL] [Abstract][Full Text] [Related]
15. Interparticle interactions in glutathione mediated assembly of gold nanoparticles. Lim II; Mott D; Ip W; Njoki PN; Pan Y; Zhou S; Zhong CJ Langmuir; 2008 Aug; 24(16):8857-63. PubMed ID: 18642936 [TBL] [Abstract][Full Text] [Related]
16. Sensitive and selective detection of cysteine using gold nanoparticles as colorimetric probes. Li L; Li B Analyst; 2009 Jul; 134(7):1361-5. PubMed ID: 19562202 [TBL] [Abstract][Full Text] [Related]
17. Facile and controlled fabrication of functional gold nanoparticle-coated polystyrene composite particle. Li Y; Pan Y; Zhu L; Wang Z; Su D; Xue G Macromol Rapid Commun; 2011 Nov; 32(21):1741-7. PubMed ID: 21858894 [TBL] [Abstract][Full Text] [Related]
18. Quantitative surface acoustic wave detection based on colloidal gold nanoparticles and their bioconjugates. Chiu CS; Gwo S Anal Chem; 2008 May; 80(9):3318-26. PubMed ID: 18363384 [TBL] [Abstract][Full Text] [Related]
19. Functional gold nanoparticle-peptide complexes as cell-targeting agents. Sun L; Liu D; Wang Z Langmuir; 2008 Sep; 24(18):10293-7. PubMed ID: 18715022 [TBL] [Abstract][Full Text] [Related]
20. Self-assembly of gold nanoparticles and polystyrene: a highly versatile approach to the preparation of colloidal particles with polystyrene cores and gold nanoparticle coronae. Tian J; Jin J; Zheng F; Zhao H Langmuir; 2010 Jun; 26(11):8762-8. PubMed ID: 20085341 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]