These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 20407757)
1. Contribution of the meniscofemoral ligament as a restraint to the posterior tibial translation in a porcine knee. Lertwanich P; Martins CA; Kato Y; Ingham SJ; Kramer S; Linde-Rosen M; Smolinski P; Fu FH Knee Surg Sports Traumatol Arthrosc; 2010 Sep; 18(9):1277-81. PubMed ID: 20407757 [TBL] [Abstract][Full Text] [Related]
2. Effects of sectioning the posterolateral structures on knee kinematics and in situ forces in the posterior cruciate ligament. Vogrin TM; Höher J; Arøen A; Woo SL; Harner CD Knee Surg Sports Traumatol Arthrosc; 2000; 8(2):93-8. PubMed ID: 10795671 [TBL] [Abstract][Full Text] [Related]
3. In-situ forces in the human posterior cruciate ligament in response to posterior tibial loading. Carlin GJ; Livesay GA; Harner CD; Ishibashi Y; Kim HS; Woo SL Ann Biomed Eng; 1996; 24(2):193-7. PubMed ID: 8678351 [TBL] [Abstract][Full Text] [Related]
4. In situ forces in the human posterior cruciate ligament in response to muscle loads: a cadaveric study. Höher J; Vogrin TM; Woo SL; Carlin GJ; Arøen A; Harner CD J Orthop Res; 1999 Sep; 17(5):763-8. PubMed ID: 10569489 [TBL] [Abstract][Full Text] [Related]
5. Anatomy of the posterior cruciate ligament and the meniscofemoral ligaments. Amis AA; Gupte CM; Bull AM; Edwards A Knee Surg Sports Traumatol Arthrosc; 2006 Mar; 14(3):257-63. PubMed ID: 16228178 [TBL] [Abstract][Full Text] [Related]
6. Determination of the in situ forces in the human posterior cruciate ligament using robotic technology. A cadaveric study. Fox RJ; Harner CD; Sakane M; Carlin GJ; Woo SL Am J Sports Med; 1998; 26(3):395-401. PubMed ID: 9617402 [TBL] [Abstract][Full Text] [Related]
7. Biomechanics of the PCL and related structures: posterolateral, posteromedial and meniscofemoral ligaments. Amis AA; Bull AM; Gupte CM; Hijazi I; Race A; Robinson JR Knee Surg Sports Traumatol Arthrosc; 2003 Sep; 11(5):271-81. PubMed ID: 12961064 [TBL] [Abstract][Full Text] [Related]
8. Importance of tibial slope for stability of the posterior cruciate ligament deficient knee. Giffin JR; Stabile KJ; Zantop T; Vogrin TM; Woo SL; Harner CD Am J Sports Med; 2007 Sep; 35(9):1443-9. PubMed ID: 17641101 [TBL] [Abstract][Full Text] [Related]
10. The meniscofemoral ligaments: secondary restraints to the posterior drawer. Analysis of anteroposterior and rotary laxity in the intact and posterior-cruciate-deficient knee. Gupte CM; Bull AM; Thomas RD; Amis AA J Bone Joint Surg Br; 2003 Jul; 85(5):765-73. PubMed ID: 12892207 [TBL] [Abstract][Full Text] [Related]
11. Tibial Slope and Its Effect on Graft Force in Posterior Cruciate Ligament Reconstructions. Bernhardson AS; Aman ZS; DePhillipo NN; Dornan GJ; Storaci HW; Brady AW; Nakama G; LaPrade RF Am J Sports Med; 2019 Apr; 47(5):1168-1174. PubMed ID: 30896980 [TBL] [Abstract][Full Text] [Related]
12. Analysis of meniscofemoral ligament tension during knee motion. Moran CJ; Poynton AR; Moran R; Brien MO Arthroscopy; 2006 Apr; 22(4):362-6. PubMed ID: 16581447 [TBL] [Abstract][Full Text] [Related]
13. Repair of the lateral posterior meniscal root improves stability in an ACL-deficient knee. Forkel P; von Deimling C; Lacheta L; Imhoff FB; Foehr P; Willinger L; Dyrna F; Petersen W; Imhoff AB; Burgkart R Knee Surg Sports Traumatol Arthrosc; 2018 Aug; 26(8):2302-2309. PubMed ID: 29704113 [TBL] [Abstract][Full Text] [Related]
14. Effect of posterior cruciate ligament deficiency on in vivo translation and rotation of the knee during weightbearing flexion. Li G; Papannagari R; Li M; Bingham J; Nha KW; Allred D; Gill T Am J Sports Med; 2008 Mar; 36(3):474-9. PubMed ID: 18057390 [TBL] [Abstract][Full Text] [Related]
16. Complementary Function of the Meniscofemoral Ligament and Lateral Meniscus Posterior Root to Stabilize the Lateral Meniscus Posterior Horn: A Biomechanical Study in a Porcine Knee Model. Ohori T; Mae T; Shino K; Tachibana Y; Fujie H; Yoshikawa H; Nakata K Orthop J Sports Med; 2019 Jan; 7(1):2325967118821605. PubMed ID: 30719478 [TBL] [Abstract][Full Text] [Related]
17. The effects of a popliteus muscle load on in situ forces in the posterior cruciate ligament and on knee kinematics. A human cadaveric study. Harner CD; Höher J; Vogrin TM; Carlin GJ; Woo SL Am J Sports Med; 1998; 26(5):669-73. PubMed ID: 9784814 [TBL] [Abstract][Full Text] [Related]
18. Effect of tunnel position for anatomic single-bundle ACL reconstruction on knee biomechanics in a porcine model. Kato Y; Ingham SJ; Kramer S; Smolinski P; Saito A; Fu FH Knee Surg Sports Traumatol Arthrosc; 2010 Jan; 18(1):2-10. PubMed ID: 19784631 [TBL] [Abstract][Full Text] [Related]
19. A biomechanical analysis of two reconstructive approaches to the posterolateral corner of the knee. Kanamori A; Lee JM; Haemmerle MJ; Vogrin TM; Harner CD Knee Surg Sports Traumatol Arthrosc; 2003 Sep; 11(5):312-7. PubMed ID: 12937893 [TBL] [Abstract][Full Text] [Related]
20. Kinematics of Different Components of the Posterolateral Corner of the Knee in the Lateral Collateral Ligament-intact State: A Human Cadaveric Study. Domnick C; Frosch KH; Raschke MJ; Vogel N; Schulze M; von Glahn M; Drenck TC; Herbort M Arthroscopy; 2017 Oct; 33(10):1821-1830.e1. PubMed ID: 28615108 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]