BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

536 related articles for article (PubMed ID: 20407804)

  • 21. Electron transfer in human methionine synthase reductase studied by stopped-flow spectrophotometry.
    Wolthers KR; Scrutton NS
    Biochemistry; 2004 Jan; 43(2):490-500. PubMed ID: 14717604
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inhibition of the oxidation of hydroxyl radical scavenging agents after alkaline phosphatase treatment of rat liver microsomes.
    Puntarulo S; Cederbaum AI
    Biochim Biophys Acta; 1991 May; 1074(1):12-8. PubMed ID: 1904277
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reaction of the NAD(P)H:flavin oxidoreductase from Escherichia coli with NADPH and riboflavin: identification of intermediates.
    Nivière V; Vanoni MA; Zanetti G; Fontecave M
    Biochemistry; 1998 Aug; 37(34):11879-87. PubMed ID: 9718311
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electron transfer in flavocytochrome P450 BM3: kinetics of flavin reduction and oxidation, the role of cysteine 999, and relationships with mammalian cytochrome P450 reductase.
    Roitel O; Scrutton NS; Munro AW
    Biochemistry; 2003 Sep; 42(36):10809-21. PubMed ID: 12962506
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Crystal structure of a ferredoxin reductase for the CYP199A2 system from Rhodopseudomonas palustris.
    Xu F; Bell SG; Peng Y; Johnson EO; Bartlam M; Rao Z; Wong LL
    Proteins; 2009 Dec; 77(4):867-80. PubMed ID: 19626710
    [TBL] [Abstract][Full Text] [Related]  

  • 26. LuxG is a functioning flavin reductase for bacterial luminescence.
    Nijvipakul S; Wongratana J; Suadee C; Entsch B; Ballou DP; Chaiyen P
    J Bacteriol; 2008 Mar; 190(5):1531-8. PubMed ID: 18156264
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Avoiding high-valent iron intermediates: superoxide reductase and rubrerythrin.
    Kurtz DM
    J Inorg Biochem; 2006 Apr; 100(4):679-93. PubMed ID: 16504301
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interaction of ferric complexes with NADH-cytochrome b5 reductase and cytochrome b5: lipid peroxidation, H2O2 generation, and ferric reduction.
    Yang MX; Cederbaum AI
    Arch Biochem Biophys; 1996 Jul; 331(1):69-78. PubMed ID: 8660685
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ferredoxin-NADP reductase from the thermophilic hydrogen-oxidizing bacterium, Hydrogenobacter thermophilus TK-6.
    Ikeda T; Nakamura M; Arai H; Ishii M; Igarashi Y
    FEMS Microbiol Lett; 2009 Aug; 297(1):124-30. PubMed ID: 19552713
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biochemical characterization of StyAB from Pseudomonas sp. strain VLB120 as a two-component flavin-diffusible monooxygenase.
    Otto K; Hofstetter K; Röthlisberger M; Witholt B; Schmid A
    J Bacteriol; 2004 Aug; 186(16):5292-302. PubMed ID: 15292130
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nitric oxide precipitates catastrophic chromosome fragmentation by bolstering both hydrogen peroxide and Fe(II) Fenton reactants in E. coli.
    Agashe P; Kuzminov A
    J Biol Chem; 2022 Apr; 298(4):101825. PubMed ID: 35288189
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Purification and characterization of the Comamonas testosteroni B-356 biphenyl dioxygenase components.
    Hurtubise Y; Barriault D; Powlowski J; Sylvestre M
    J Bacteriol; 1995 Nov; 177(22):6610-8. PubMed ID: 7592440
    [TBL] [Abstract][Full Text] [Related]  

  • 33. VuuB and IutB reduce ferric-vulnibactin in Vibrio vulnificus M2799.
    Okai N; Miyamoto K; Tomoo K; Tsuchiya T; Komano J; Tanabe T; Funahashi T; Tsujibo H
    Biometals; 2020 Oct; 33(4-5):187-200. PubMed ID: 32681432
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Iron-reductases in the yeast Saccharomyces cerevisiae.
    Lesuisse E; Crichton RR; Labbe P
    Biochim Biophys Acta; 1990 Apr; 1038(2):253-9. PubMed ID: 2184897
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Towards a new interaction enzyme:coenzyme.
    Martínez-Júlvez M; Tejero J; Peregrina JR; Nogués I; Frago S; Gómez-Moreno C; Medina M
    Biophys Chem; 2005 Apr; 115(2-3):219-24. PubMed ID: 15752608
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Escherichia coli flavohaemoglobin (Hmp) reduces cytochrome c and Fe(III)-hydroxamate K by electron transfer from NADH via FAD: sensitivity of oxidoreductase activity to haem-bound dioxygen.
    Poole RK; Rogers NJ; D'mello RAM; Hughes MN; Orii Y
    Microbiology (Reading); 1997 May; 143 ( Pt 5)():1557-1565. PubMed ID: 9168606
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ferric and cupric reductase activities by iron-limited cells of the green alga Chlorella kessleri: quantification via oxygen electrode.
    Weger HG; Walker CN; Fink MB
    Physiol Plant; 2007 Oct; 131(2):322-31. PubMed ID: 18251903
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biochemical and structural characterization of Pseudomonas aeruginosa Bfd and FPR: ferredoxin NADP+ reductase and not ferredoxin is the redox partner of heme oxygenase under iron-starvation conditions.
    Wang A; Zeng Y; Han H; Weeratunga S; Morgan BN; Moënne-Loccoz P; Schönbrunn E; Rivera M
    Biochemistry; 2007 Oct; 46(43):12198-211. PubMed ID: 17915950
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular characterization of monodehydroascorbate radical reductase from cucumber highly expressed in Escherichia coli.
    Sano S; Miyake C; Mikami B; Asada K
    J Biol Chem; 1995 Sep; 270(36):21354-61. PubMed ID: 7545669
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interactions between artemisinins and other antimalarial drugs in relation to the cofactor model--a unifying proposal for drug action.
    Haynes RK; Cheu KW; Chan HW; Wong HN; Li KY; Tang MM; Chen MJ; Guo ZF; Guo ZH; Sinniah K; Witte AB; Coghi P; Monti D
    ChemMedChem; 2012 Dec; 7(12):2204-26. PubMed ID: 23112085
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.