These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 20407846)
1. Rhodopsin-regulated insulin receptor signaling pathway in rod photoreceptor neurons. Rajala RV; Anderson RE Mol Neurobiol; 2010 Aug; 42(1):39-47. PubMed ID: 20407846 [TBL] [Abstract][Full Text] [Related]
2. Growth factor receptor-bound protein 14 undergoes light-dependent intracellular translocation in rod photoreceptors: functional role in retinal insulin receptor activation. Rajala A; Daly RJ; Tanito M; Allen DT; Holt LJ; Lobanova ES; Arshavsky VY; Rajala RV Biochemistry; 2009 Jun; 48(24):5563-72. PubMed ID: 19438210 [TBL] [Abstract][Full Text] [Related]
3. Enhanced retinal insulin receptor-activated neuroprotective survival signal in mice lacking the protein-tyrosine phosphatase-1B gene. Rajala RV; Tanito M; Neel BG; Rajala A J Biol Chem; 2010 Mar; 285(12):8894-904. PubMed ID: 20061388 [TBL] [Abstract][Full Text] [Related]
4. G-protein-coupled receptor rhodopsin regulates the phosphorylation of retinal insulin receptor. Rajala A; Anderson RE; Ma JX; Lem J; Al-Ubaidi MR; Rajala RVS J Biol Chem; 2007 Mar; 282(13):9865-9873. PubMed ID: 17272282 [TBL] [Abstract][Full Text] [Related]
5. Light regulation of the insulin receptor in the retina. Rajala RV; Anderson RE Mol Neurobiol; 2003 Oct; 28(2):123-38. PubMed ID: 14576451 [TBL] [Abstract][Full Text] [Related]
6. Loss of neuroprotective survival signal in mice lacking insulin receptor gene in rod photoreceptor cells. Rajala A; Tanito M; Le YZ; Kahn CR; Rajala RV J Biol Chem; 2008 Jul; 283(28):19781-92. PubMed ID: 18480052 [TBL] [Abstract][Full Text] [Related]
8. Autophagy in Wen RH; Stanar P; Tam B; Moritz OL Autophagy; 2019 Nov; 15(11):1970-1989. PubMed ID: 30975014 [TBL] [Abstract][Full Text] [Related]
9. The G protein-coupled receptor rhodopsin: a historical perspective. Hofmann L; Palczewski K Methods Mol Biol; 2015; 1271():3-18. PubMed ID: 25697513 [TBL] [Abstract][Full Text] [Related]
10. A physiological role for the supramolecular organization of rhodopsin and transducin in rod photoreceptors. Dell'Orco D FEBS Lett; 2013 Jun; 587(13):2060-6. PubMed ID: 23684654 [TBL] [Abstract][Full Text] [Related]
11. Synchronized Photoactivation of T4K Rhodopsin Causes a Chromophore-Dependent Retinal Degeneration That Is Moderated by Interaction with Phototransduction Cascade Components. Tam BM; Burns P; Chiu CN; Moritz OL J Neurosci; 2024 Sep; 44(36):. PubMed ID: 39089885 [TBL] [Abstract][Full Text] [Related]
12. Role of neurotrophin receptor TrkB in the maturation of rod photoreceptors and establishment of synaptic transmission to the inner retina. Rohrer B; Korenbrot JI; LaVail MM; Reichardt LF; Xu B J Neurosci; 1999 Oct; 19(20):8919-30. PubMed ID: 10516311 [TBL] [Abstract][Full Text] [Related]
13. Dephosphorylation during bleach and regeneration of visual pigment in carp rod and cone membranes. Yamaoka H; Tachibanaki S; Kawamura S J Biol Chem; 2015 Oct; 290(40):24381-90. PubMed ID: 26286749 [TBL] [Abstract][Full Text] [Related]
14. Induction of the unfolded protein response by constitutive G-protein signaling in rod photoreceptor cells. Wang T; Chen J J Biol Chem; 2014 Oct; 289(42):29310-21. PubMed ID: 25183010 [TBL] [Abstract][Full Text] [Related]
15. Raftophilic rhodopsin-clusters offer stochastic platforms for G protein signalling in retinal discs. Hayashi F; Saito N; Tanimoto Y; Okada K; Morigaki K; Seno K; Maekawa S Commun Biol; 2019; 2():209. PubMed ID: 31240247 [TBL] [Abstract][Full Text] [Related]
16. Digoxin-induced retinal degeneration depends on rhodopsin. Landfried B; Samardzija M; Barben M; Schori C; Klee K; Storti F; Grimm C Cell Death Dis; 2017 Mar; 8(3):e2670. PubMed ID: 28300845 [TBL] [Abstract][Full Text] [Related]
17. Ablation of Chop Transiently Enhances Photoreceptor Survival but Does Not Prevent Retinal Degeneration in Transgenic Mice Expressing Human P23H Rhodopsin. Chiang WC; Joseph V; Yasumura D; Matthes MT; Lewin AS; Gorbatyuk MS; Ahern K; LaVail MM; Lin JH Adv Exp Med Biol; 2016; 854():185-91. PubMed ID: 26427410 [TBL] [Abstract][Full Text] [Related]
18. The physiological roles of arrestin-1 in rod photoreceptor cells. Chen J Handb Exp Pharmacol; 2014; 219():85-99. PubMed ID: 24292825 [TBL] [Abstract][Full Text] [Related]
19. Effect of Rhodopsin Phosphorylation on Dark Adaptation in Mouse Rods. Berry J; Frederiksen R; Yao Y; Nymark S; Chen J; Cornwall C J Neurosci; 2016 Jun; 36(26):6973-87. PubMed ID: 27358455 [TBL] [Abstract][Full Text] [Related]