These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 20408489)

  • 21. EndoCAS navigator platform: a common platform for computer and robotic assistance in minimally invasive surgery.
    Megali G; Ferrari V; Freschi C; Morabito B; Cavallo F; Turini G; Troia E; Cappelli C; Pietrabissa A; Tonet O; Cuschieri A; Dario P; Mosca F
    Int J Med Robot; 2008 Sep; 4(3):242-51. PubMed ID: 18698670
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Real-time haptic-teleoperated robotic system for motor control analysis.
    Shull PB; Gonzalez RV
    J Neurosci Methods; 2006 Mar; 151(2):194-9. PubMed ID: 16153712
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A novel control architecture for physiological tremor compensation in teleoperated systems.
    Ghorbanian A; Zareinejad M; Rezaei SM; Sheikhzadeh H; Baghestan K
    Int J Med Robot; 2013 Sep; 9(3):280-97. PubMed ID: 22588805
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Virtual tool for bilaterally controlled forceps robot--for minimally invasive surgery.
    Abeykoon AM; Ohnishi K
    Int J Med Robot; 2007 Sep; 3(3):271-80. PubMed ID: 17729375
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Computer guidance system for single-incision bimanual robotic surgery.
    Carbone M; Turini G; Petroni G; Niccolini M; Menciassi A; Ferrari M; Mosca F; Ferrari V
    Comput Aided Surg; 2012; 17(4):161-71. PubMed ID: 22687053
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dynamic active constraints for hyper-redundant flexible robots.
    Kwok KW; Mylonas GP; Sun LW; Lerotic M; Clark J; Athanasiou T; Darzi A; Yang GZ
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 1):410-7. PubMed ID: 20426014
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Control architecture for human-robot integration: application to a robotic wheelchair.
    Galindo C; Gonzalez J; Fernández-Madrigal JA
    IEEE Trans Syst Man Cybern B Cybern; 2006 Oct; 36(5):1053-67. PubMed ID: 17036812
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assistance to bone milling: a tool mounted visual display improves the efficiency of robotic guidance.
    Francoise V; Sahbani A; Roby-Brami A; Morel G
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6252-6. PubMed ID: 24111169
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Device to provide intuitive assistance in laparoscope holding.
    Minor A; Ordorica R; Villalobos J; Galan M
    Ann Biomed Eng; 2009 Mar; 37(3):643-9. PubMed ID: 19125332
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Robotic-assisted operations in digestive and endocrine surgery using Da Vinci system].
    Bresler L
    Ann Chir; 2006 May; 131(5):299-301. PubMed ID: 16630532
    [No Abstract]   [Full Text] [Related]  

  • 31. A novel concept for smart trepanation.
    Follmann A; Korff A; Fuertjes T; Kunze SC; Schmieder K; Radermacher K
    J Craniofac Surg; 2012 Jan; 23(1):309-14. PubMed ID: 22337432
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Robot-assisted craniotomy.
    Eggers G; Wirtz C; Korb W; Engel D; Schorr O; Kotrikova B; Raczkowsky J; Wörn H; Mühling J; Hassfeld S; Marmulla R
    Minim Invasive Neurosurg; 2005 Jun; 48(3):154-8. PubMed ID: 16015492
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Usability of cooperative surgical telemanipulation for bone milling tasks.
    Schleer P; Vossel M; Heckmann L; Drobinsky S; Theisgen L; de la Fuente M; Radermacher K
    Int J Comput Assist Radiol Surg; 2021 Feb; 16(2):311-322. PubMed ID: 33355895
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Advanced da Vinci Surgical System simulator for surgeon training and operation planning.
    Sun LW; Van Meer F; Schmid J; Bailly Y; Thakre AA; Yeung CK
    Int J Med Robot; 2007 Sep; 3(3):245-51. PubMed ID: 17576641
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Miniature robotic guidance for spine surgery--introduction of a novel system and analysis of challenges encountered during the clinical development phase at two spine centres.
    Barzilay Y; Liebergall M; Fridlander A; Knoller N
    Int J Med Robot; 2006 Jun; 2(2):146-53. PubMed ID: 17520625
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Research on spatial motion safety constraints and cooperative control of robot-assisted craniotomy: Beagle model experiment verification.
    Xu C; Lin L; Mar Aung Z; Chai G; Xie L
    Int J Med Robot; 2021 Apr; 17(2):e2231. PubMed ID: 33470010
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Robotic pyeloplasty using internet protocol and satellite network-based telesurgery.
    Nguan CY; Morady R; Wang C; Harrison D; Browning D; Rayman R; Luke PP
    Int J Med Robot; 2008 Mar; 4(1):10-4. PubMed ID: 18265415
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Real-time simulation for intra-operative navigation in robotic surgery. Using a mass spring system for a basic study of organ deformation.
    Kawamura K; Kobayashi Y; Fujie MG
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1237-41. PubMed ID: 18002187
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Automation in surgery: a systematical approach].
    Strauss G; Meixensberger J; Dietz A; Manzey D
    Laryngorhinootologie; 2007 Apr; 86(4):256-62. PubMed ID: 17407008
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spatial motion constraints for robot assisted suturing using virtual fixtures.
    Kapoor A; Li M; Taylor RH
    Med Image Comput Comput Assist Interv; 2005; 8(Pt 2):89-96. PubMed ID: 16685947
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.