These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 20408597)

  • 1. Vibrational energy relaxation rates via the linearized semiclassical method without force derivatives.
    Vázquez FX; Navrotskaya I; Geva E
    J Phys Chem A; 2010 May; 114(18):5682-8. PubMed ID: 20408597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vibrational energy relaxation rates via the linearized semiclassical approximation: applications to neat diatomic liquids and atomic-diatomic liquid mixtures.
    Ka BJ; Shi Q; Geva E
    J Phys Chem A; 2005 Jun; 109(25):5527-36. PubMed ID: 16833883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vibrational energy relaxation rates of H2 and D2 in liquid argon via the linearized semiclassical method.
    Navrotskaya I; Geva E
    J Phys Chem A; 2007 Jan; 111(3):460-7. PubMed ID: 17228894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vibrational energy relaxation in liquid HCl and DCl via the linearized semiclassical method: electrostriction versus quantum delocalization.
    Vázquez FX; Talapatra S; Geva E
    J Phys Chem A; 2011 Sep; 115(35):9775-81. PubMed ID: 21770388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vibrational energy relaxation of polyatomic molecules in liquid solution via the linearized semiclassical method.
    Ka BJ; Geva E
    J Phys Chem A; 2006 Aug; 110(31):9555-67. PubMed ID: 16884188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A semiclassical generalized quantum master equation for an arbitrary system-bath coupling.
    Shi Q; Geva E
    J Chem Phys; 2004 Jun; 120(22):10647-58. PubMed ID: 15268091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Semiclassical initial value series representation in the continuum limit: application to vibrational relaxation.
    Moix JM; Pollak E
    J Chem Phys; 2008 Aug; 129(6):064515. PubMed ID: 18715093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Linearized semiclassical initial value time correlation functions using the thermal Gaussian approximation: applications to condensed phase systems.
    Liu J; Miller WH
    J Chem Phys; 2007 Sep; 127(11):114506. PubMed ID: 17887856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using the thermal Gaussian approximation for the Boltzmann operator in semiclassical initial value time correlation functions.
    Liu J; Miller WH
    J Chem Phys; 2006 Dec; 125(22):224104. PubMed ID: 17176131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real time correlation function in a single phase space integral beyond the linearized semiclassical initial value representation.
    Liu J; Miller WH
    J Chem Phys; 2007 Jun; 126(23):234110. PubMed ID: 17600407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time-dependent approaches for the calculation of intersystem crossing rates.
    Etinski M; Tatchen J; Marian CM
    J Chem Phys; 2011 Apr; 134(15):154105. PubMed ID: 21513373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison between the Landau-Teller and flux-flux methods for computing vibrational energy relaxation rate constants in the condensed phase.
    Navrotskaya I; Geva E
    J Chem Phys; 2007 Aug; 127(5):054504. PubMed ID: 17688346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison between different semiclassical approximations for optical response functions in nonpolar liquid solution. II. The signature of excited state dynamics on two-dimensional spectra.
    Shi Q; Geva E
    J Chem Phys; 2008 Sep; 129(12):124505. PubMed ID: 19045034
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A simple model for the treatment of imaginary frequencies in chemical reaction rates and molecular liquids.
    Liu J; Miller WH
    J Chem Phys; 2009 Aug; 131(7):074113. PubMed ID: 19708738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A first principles based polarizable O(N) interatomic force field for bulk silica.
    Kermode JR; Cereda S; Tangney P; De Vita A
    J Chem Phys; 2010 Sep; 133(9):094102. PubMed ID: 20831310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insights in quantum dynamical effects in the infrared spectroscopy of liquid water from a semiclassical study with an ab initio-based flexible and polarizable force field.
    Liu J; Miller WH; Fanourgakis GS; Xantheas SS; Imoto S; Saito S
    J Chem Phys; 2011 Dec; 135(24):244503. PubMed ID: 22225165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A line-shape function in terms of changes in both molecular structure and force constants: a Gaussian approximation.
    Umesaki K; Kikuchi H
    J Chem Phys; 2006 Feb; 124(7):74304. PubMed ID: 16497033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A benchmark study of different methods for calculating one- and two-dimensional optical spectra.
    McRobbie PL; Geva E
    J Phys Chem A; 2009 Oct; 113(39):10425-34. PubMed ID: 19775171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calculating electron paramagnetic resonance g-matrices for triplet state molecules from multireference spin-orbit configuration interaction wave functions.
    Tatchen J; Kleinschmidt M; Marian CM
    J Chem Phys; 2009 Apr; 130(15):154106. PubMed ID: 19388735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational vibrational spectroscopy of peptides and proteins in one and two dimensions.
    Jeon J; Yang S; Choi JH; Cho M
    Acc Chem Res; 2009 Sep; 42(9):1280-9. PubMed ID: 19456096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.