BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 20408614)

  • 1. Computer simulation of short-range repulsion between supported phospholipid membranes.
    Pertsin A; Platonov D; Grunze M
    Biointerphases; 2006 Mar; 1(1):40. PubMed ID: 20408614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct computer simulation of water-mediated force between supported phospholipid membranes.
    Pertsin A; Platonov D; Grunze M
    J Chem Phys; 2005 Jun; 122(24):244708. PubMed ID: 16035794
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Origin of short-range repulsion between hydrated phospholipid bilayers: a computer simulation study.
    Pertsin A; Platonov D; Grunze M
    Langmuir; 2007 Jan; 23(3):1388-93. PubMed ID: 17241063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature dependence of the short-range repulsion between hydrated phospholipid membranes: A computer simulation study.
    Pertsin A; Grunze M
    Biointerphases; 2007 Sep; 2(3):105-8. PubMed ID: 20408644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computer simulation of water-mediated forces between gel-phase phospholipid bilayers.
    Pertsin A; Fedyanin I; Grunze M
    J Chem Phys; 2009 Dec; 131(21):215102. PubMed ID: 19968369
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Monte Carlo simulation study of the aqueous hydration of r(GpC)2: comparison with crystallographic ordered water sites.
    Subramanian PS; Pitchumani S; Beveridge DL; Berman HM
    Biopolymers; 1990; 29(4-5):771-83. PubMed ID: 2383642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diffusion Monte Carlo simulations on uracil-water using an anisotropic atom-atom potential model.
    van Mourik T; Price SL; Clary DC
    Faraday Discuss; 2001; (118):95-108; discussion 109-19. PubMed ID: 11605284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A theoretical study of the aqueous hydration of canonical B d(CGCGAATTCGCG): Monte Carlo simulation and comparison with crystallographic ordered water sites.
    Subramanian PS; Beveridge DL
    J Biomol Struct Dyn; 1989 Jun; 6(6):1093-122. PubMed ID: 2684218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How hydrophobic hydration responds to solute size and attractions: Theory and simulations.
    Athawale MV; Jamadagni SN; Garde S
    J Chem Phys; 2009 Sep; 131(11):115102. PubMed ID: 19778151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The SAAP force field: development of the single amino acid potentials for 20 proteinogenic amino acids and Monte Carlo molecular simulation for short peptides.
    Iwaoka M; Kimura N; Yosida D; Minezaki T
    J Comput Chem; 2009 Oct; 30(13):2039-55. PubMed ID: 19140140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of NaCl and KCl on phosphatidylcholine and phosphatidylethanolamine lipid membranes: insight from atomic-scale simulations for understanding salt-induced effects in the plasma membrane.
    Gurtovenko AA; Vattulainen I
    J Phys Chem B; 2008 Feb; 112(7):1953-62. PubMed ID: 18225878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrostatic polarization effects and hydrophobic hydration in ethanol-water solutions from molecular dynamics simulations.
    Zhong Y; Patel S
    J Phys Chem B; 2009 Jan; 113(3):767-78. PubMed ID: 19115819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Leading RNA tertiary interactions: structures, energies, and water insertion of A-minor and P-interactions. A quantum chemical view.
    Sponer JE; Réblova K; Mokdad A; Sychrovský V; Leszczynski J; Sponer J
    J Phys Chem B; 2007 Aug; 111(30):9153-64. PubMed ID: 17602515
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fitting properties from density functional theory based molecular dynamics simulations to parameterize a rigid water force field.
    Sala J; Guàrdia E; Martí J; Spångberg D; Masia M
    J Chem Phys; 2012 Feb; 136(5):054103. PubMed ID: 22320721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface tension of water and acid gases from Monte Carlo simulations.
    Ghoufi A; Goujon F; Lachet V; Malfreyt P
    J Chem Phys; 2008 Apr; 128(15):154716. PubMed ID: 18433267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of the salting out of methane from aqueous electrolyte solutions using computer simulations.
    Docherty H; Galindo A; Sanz E; Vega C
    J Phys Chem B; 2007 Aug; 111(30):8993-9000. PubMed ID: 17595128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effective potentials for 1:1 electrolyte solutions incorporating dielectric saturation and repulsive hydration.
    Lenart PJ; Jusufi A; Panagiotopoulos AZ
    J Chem Phys; 2007 Jan; 126(4):044509. PubMed ID: 17286489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the TIP4P-Ew water model: vapor pressure and boiling point.
    Horn HW; Swope WC; Pitera JW
    J Chem Phys; 2005 Nov; 123(19):194504. PubMed ID: 16321097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrostatic model for mixed cationic-zwitterionic lipid bilayers.
    Mbamala EC; Fahr A; May S
    Langmuir; 2006 May; 22(11):5129-36. PubMed ID: 16700604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spermine: an "invisible" component in the crystals of B-DNA. A grand canonical Monte Carlo and molecular dynamics simulation study.
    Korolev N; Lyubartsev AP; Nordenskiöld L; Laaksonen A
    J Mol Biol; 2001 May; 308(5):907-17. PubMed ID: 11352581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.