BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 20408983)

  • 1. TiO2 nanotubes as a therapeutic agent for cancer thermotherapy.
    Lee C; Hong C; Kim H; Kang J; Zheng HM
    Photochem Photobiol; 2010; 86(4):981-9. PubMed ID: 20408983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In-vitro cell tests using doxorubicin-loaded polymeric TiO2 nanotubes used for cancer photothermotherapy.
    Hong C; An S; Son M; Hong SS; Lee DH; Lee C
    Anticancer Drugs; 2012 Jun; 23(5):553-60. PubMed ID: 22481062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hyperthermic effect of multi-walled carbon nanotubes stimulated with near infrared irradiation for anticancer therapy: in vitro studies.
    Burlaka A; Lukin S; Prylutska S; Remeniak O; Prylutskyy Y; Shuba M; Maksimenko S; Ritter U; Scharff P
    Exp Oncol; 2010 Mar; 32(1):48-50. PubMed ID: 20332757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel photodynamic therapy using water-dispersed TiO2-polyethylene glycol compound: evaluation of antitumor effect on glioma cells and spheroids in vitro.
    Yamaguchi S; Kobayashi H; Narita T; Kanehira K; Sonezaki S; Kubota Y; Terasaka S; Iwasaki Y
    Photochem Photobiol; 2010; 86(4):964-71. PubMed ID: 20492566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes.
    Moon HK; Lee SH; Choi HC
    ACS Nano; 2009 Nov; 3(11):3707-13. PubMed ID: 19877694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photothermal properties of inorganic nanomaterials as therapeutic agents for cancer thermotherapy.
    Hong C; Kang J; Kim H; Lee C
    J Nanosci Nanotechnol; 2012 May; 12(5):4352-5. PubMed ID: 22852406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In-vivo cancer cell destruction using porous silicon nanoparticles.
    Hong C; Lee J; Son M; Hong SS; Lee C
    Anticancer Drugs; 2011 Nov; 22(10):971-7. PubMed ID: 21934604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Au nanorod design as light-absorber in the first and second biological near-infrared windows for in vivo photothermal therapy.
    Tsai MF; Chang SH; Cheng FY; Shanmugam V; Cheng YS; Su CH; Yeh CS
    ACS Nano; 2013 Jun; 7(6):5330-42. PubMed ID: 23651267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of polydopamine functionalized titanium dioxide nanotubes on endothelial cell and smooth muscle cell.
    Zhong S; Luo R; Wang X; Tang L; Wu J; Wang J; Huang R; Sun H; Huang N
    Colloids Surf B Biointerfaces; 2014 Apr; 116():553-60. PubMed ID: 24637093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective photothermal therapy for mixed cancer cells using aptamer-conjugated nanorods.
    Huang YF; Sefah K; Bamrungsap S; Chang HT; Tan W
    Langmuir; 2008 Oct; 24(20):11860-5. PubMed ID: 18817428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondria-targeting single-walled carbon nanotubes for cancer photothermal therapy.
    Zhou F; Wu S; Wu B; Chen WR; Xing D
    Small; 2011 Oct; 7(19):2727-35. PubMed ID: 21861293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes.
    Markovic ZM; Harhaji-Trajkovic LM; Todorovic-Markovic BM; Kepić DP; Arsikin KM; Jovanović SP; Pantovic AC; Dramićanin MD; Trajkovic VS
    Biomaterials; 2011 Feb; 32(4):1121-9. PubMed ID: 21071083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly flexible coaxial nanohybrids made from porous TiO2 nanotubes.
    Wang D; Liu Y; Wang C; Zhou F; Liu W
    ACS Nano; 2009 May; 3(5):1249-57. PubMed ID: 19413294
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new photothermal therapeutic agent: core-free nanostructured Au x Ag1-x dendrites.
    Hu KW; Huang CC; Hwu JR; Su WC; Shieh DB; Yeh CS
    Chemistry; 2008; 14(10):2956-64. PubMed ID: 18335446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro photothermal destruction of neuroblastoma cells using carbon nanotubes conjugated with GD2 monoclonal antibody.
    Wang CH; Huang YJ; Chang CW; Hsu WM; Peng CA
    Nanotechnology; 2009 Aug; 20(31):315101. PubMed ID: 19597244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sonodynamic therapy using water-dispersed TiO2-polyethylene glycol compound on glioma cells: comparison of cytotoxic mechanism with photodynamic therapy.
    Yamaguchi S; Kobayashi H; Narita T; Kanehira K; Sonezaki S; Kudo N; Kubota Y; Terasaka S; Houkin K
    Ultrason Sonochem; 2011 Sep; 18(5):1197-204. PubMed ID: 21257331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytotoxicity evaluation and subcellular location of titanium dioxide nanotubes.
    Wang Y; Sui K; Fang J; Yao C; Yuan L; Wu Q; Wu M
    Appl Biochem Biotechnol; 2013 Dec; 171(7):1568-77. PubMed ID: 23975283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Poly(ethylene glycol)-modified gold nanorods as a photothermal nanodevice for hyperthermia.
    Niidome T; Akiyama Y; Yamagata M; Kawano T; Mori T; Niidome Y; Katayama Y
    J Biomater Sci Polym Ed; 2009; 20(9):1203-15. PubMed ID: 19520008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasound activation of TiO2 in melanoma tumors.
    Harada Y; Ogawa K; Irie Y; Endo H; Feril LB; Uemura T; Tachibana K
    J Control Release; 2011 Jan; 149(2):190-5. PubMed ID: 20951750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study of Pt/TiO2 nanocomposite for cancer-cell treatment.
    Liu L; Miao P; Xu Y; Tian Z; Zou Z; Li G
    J Photochem Photobiol B; 2010 Mar; 98(3):207-10. PubMed ID: 20149675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.