These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
322 related articles for article (PubMed ID: 20408999)
1. An integrated transcriptome atlas of the crop model Glycine max, and its use in comparative analyses in plants. Libault M; Farmer A; Joshi T; Takahashi K; Langley RJ; Franklin LD; He J; Xu D; May G; Stacey G Plant J; 2010 Jul; 63(1):86-99. PubMed ID: 20408999 [TBL] [Abstract][Full Text] [Related]
2. Inactivation of duplicated nod factor receptor 5 (NFR5) genes in recessive loss-of-function non-nodulation mutants of allotetraploid soybean (Glycine max L. Merr.). Indrasumunar A; Kereszt A; Searle I; Miyagi M; Li D; Nguyen CD; Men A; Carroll BJ; Gresshoff PM Plant Cell Physiol; 2010 Feb; 51(2):201-14. PubMed ID: 20007291 [TBL] [Abstract][Full Text] [Related]
3. Fractionation of synteny in a genomic region containing tandemly duplicated genes across glycine max, Medicago truncatula, and Arabidopsis thaliana. Schlueter JA; Scheffler BE; Jackson S; Shoemaker RC J Hered; 2008; 99(4):390-5. PubMed ID: 18316321 [TBL] [Abstract][Full Text] [Related]
4. A novel plant protein disulfide isomerase family homologous to animal P5 - molecular cloning and characterization as a functional protein for folding of soybean seed-storage proteins. Wadahama H; Kamauchi S; Nakamoto Y; Nishizawa K; Ishimoto M; Kawada T; Urade R FEBS J; 2008 Feb; 275(3):399-410. PubMed ID: 18167147 [TBL] [Abstract][Full Text] [Related]
5. Characterization of 954 bovine full-CDS cDNA sequences. Harhay GP; Sonstegard TS; Keele JW; Heaton MP; Clawson ML; Snelling WM; Wiedmann RT; Van Tassell CP; Smith TP BMC Genomics; 2005 Nov; 6():166. PubMed ID: 16305752 [TBL] [Abstract][Full Text] [Related]
6. Molecular cloning and characterization of a novel soybean gene encoding a leucine-zipper-like protein induced to salt stress. Aoki A; Kanegami A; Mihara M; Kojima T; Shiraiwa M; Takahara H Gene; 2005 Aug; 356():135-45. PubMed ID: 15964719 [TBL] [Abstract][Full Text] [Related]
7. Prediction of novel miRNAs and associated target genes in Glycine max. Joshi T; Yan Z; Libault M; Jeong DH; Park S; Green PJ; Sherrier DJ; Farmer A; May G; Meyers BC; Xu D; Stacey G BMC Bioinformatics; 2010 Jan; 11 Suppl 1(Suppl 1):S14. PubMed ID: 20122185 [TBL] [Abstract][Full Text] [Related]
8. Search for nodulation-related CLE genes in the genome of Glycine max. Mortier V; Fenta BA; Martens C; Rombauts S; Holsters M; Kunert K; Goormachtig S J Exp Bot; 2011 May; 62(8):2571-83. PubMed ID: 21273331 [TBL] [Abstract][Full Text] [Related]
9. A sequence based synteny map between soybean and Arabidopsis thaliana. Shultz JL; Ray JD; Lightfoot DA BMC Genomics; 2007 Jan; 8():8. PubMed ID: 17210083 [TBL] [Abstract][Full Text] [Related]
10. Patterns of gene expression upon infection of soybean plants by Phytophthora sojae. Moy P; Qutob D; Chapman BP; Atkinson I; Gijzen M Mol Plant Microbe Interact; 2004 Oct; 17(10):1051-62. PubMed ID: 15497398 [TBL] [Abstract][Full Text] [Related]
11. Genomic organization and evolutionary insights on GRP and NCR genes, two large nodule-specific gene families in Medicago truncatula. Alunni B; Kevei Z; Redondo-Nieto M; Kondorosi A; Mergaert P; Kondorosi E Mol Plant Microbe Interact; 2007 Sep; 20(9):1138-48. PubMed ID: 17849716 [TBL] [Abstract][Full Text] [Related]
12. Highly syntenic regions in the genomes of soybean, Medicago truncatula, and Arabidopsis thaliana. Mudge J; Cannon SB; Kalo P; Oldroyd GE; Roe BA; Town CD; Young ND BMC Plant Biol; 2005 Aug; 5():15. PubMed ID: 16102170 [TBL] [Abstract][Full Text] [Related]
17. Dynamic rearrangements determine genome organization and useful traits in soybean. Kim KD; Shin JH; Van K; Kim DH; Lee SH Plant Physiol; 2009 Nov; 151(3):1066-76. PubMed ID: 19684227 [TBL] [Abstract][Full Text] [Related]
18. Community- and genome-based views of plant-associated bacteria: plant-bacterial interactions in soybean and rice. Ikeda S; Okubo T; Anda M; Nakashita H; Yasuda M; Sato S; Kaneko T; Tabata S; Eda S; Momiyama A; Terasawa K; Mitsui H; Minamisawa K Plant Cell Physiol; 2010 Sep; 51(9):1398-410. PubMed ID: 20685969 [TBL] [Abstract][Full Text] [Related]
19. Transcriptional analysis of highly syntenic regions between Medicago truncatula and Glycine max using tiling microarrays. Li L; He H; Zhang J; Wang X; Bai S; Stolc V; Tongprasit W; Young ND; Yu O; Deng XW Genome Biol; 2008; 9(3):R57. PubMed ID: 18348734 [TBL] [Abstract][Full Text] [Related]
20. LegumeTFDB: an integrative database of Glycine max, Lotus japonicus and Medicago truncatula transcription factors. Mochida K; Yoshida T; Sakurai T; Yamaguchi-Shinozaki K; Shinozaki K; Tran LS Bioinformatics; 2010 Jan; 26(2):290-1. PubMed ID: 19933159 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]