BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 20409461)

  • 1. Mitochondrial oscillations and waves in cardiac myocytes: insights from computational models.
    Yang L; Korge P; Weiss JN; Qu Z
    Biophys J; 2010 Apr; 98(8):1428-38. PubMed ID: 20409461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release.
    Zorov DB; Juhaszova M; Sollott SJ
    Physiol Rev; 2014 Jul; 94(3):909-50. PubMed ID: 24987008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coordinated behavior of mitochondria in both space and time: a reactive oxygen species-activated wave of mitochondrial depolarization.
    Brady NR; Elmore SP; van Beek JJ; Krab K; Courtoy PJ; Hue L; Westerhoff HV
    Biophys J; 2004 Sep; 87(3):2022-34. PubMed ID: 15345578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A wave of reactive oxygen species (ROS)-induced ROS release in a sea of excitable mitochondria.
    Brady NR; Hamacher-Brady A; Westerhoff HV; Gottlieb RA
    Antioxid Redox Signal; 2006; 8(9-10):1651-65. PubMed ID: 16987019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial ROS-induced ROS release: an update and review.
    Zorov DB; Juhaszova M; Sollott SJ
    Biochim Biophys Acta; 2006; 1757(5-6):509-17. PubMed ID: 16829228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A reaction-diffusion model of ROS-induced ROS release in a mitochondrial network.
    Zhou L; Aon MA; Almas T; Cortassa S; Winslow RL; O'Rourke B
    PLoS Comput Biol; 2010 Jan; 6(1):e1000657. PubMed ID: 20126535
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biophysical properties and functional consequences of reactive oxygen species (ROS)-induced ROS release in intact myocardium.
    Biary N; Xie C; Kauffman J; Akar FG
    J Physiol; 2011 Nov; 589(Pt 21):5167-79. PubMed ID: 21825030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Linking flickering to waves and whole-cell oscillations in a mitochondrial network model.
    Nivala M; Korge P; Nivala M; Weiss JN; Qu Z
    Biophys J; 2011 Nov; 101(9):2102-11. PubMed ID: 22067147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of permeability transition pore opening on reactive oxygen species production in rat brain mitochondria.
    Akopova OV; Kolchynskayia LY; Nosar' VY; Smyrnov AN; Malisheva MK; Man'kovskaia YN; Sahach VF
    Ukr Biokhim Zh (1999); 2011; 83(6):46-55. PubMed ID: 22364018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Slow calcium waves and redox changes precede mitochondrial permeability transition pore opening in the intact heart during hypoxia and reoxygenation.
    Davidson SM; Yellon DM; Murphy MP; Duchen MR
    Cardiovasc Res; 2012 Mar; 93(3):445-53. PubMed ID: 22198507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ROS-induced ROS release in plant and animal cells.
    Zandalinas SI; Mittler R
    Free Radic Biol Med; 2018 Jul; 122():21-27. PubMed ID: 29203327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of the mitochondrial permeability transition pore: Transient and permanent opening events.
    Boyman L; Coleman AK; Zhao G; Wescott AP; Joca HC; Greiser BM; Karbowski M; Ward CW; Lederer WJ
    Arch Biochem Biophys; 2019 May; 666():31-39. PubMed ID: 30930285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogen peroxide diffusion and scavenging shapes mitochondrial network instability and failure by sensitizing ROS-induced ROS release.
    Millare B; O'Rourke B; Trayanova N
    Sci Rep; 2020 Sep; 10(1):15758. PubMed ID: 32978406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transient opening of mitochondrial permeability transition pore by reactive oxygen species protects myocardium from ischemia-reperfusion injury.
    Saotome M; Katoh H; Yaguchi Y; Tanaka T; Urushida T; Satoh H; Hayashi H
    Am J Physiol Heart Circ Physiol; 2009 Apr; 296(4):H1125-32. PubMed ID: 19202002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial ROS production and subsequent ERK phosphorylation are necessary for temperature preconditioning of isolated ventricular myocytes.
    Bhagatte Y; Lodwick D; Storey N
    Cell Death Dis; 2012 Jul; 3(7):e345. PubMed ID: 22764104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial depolarization underlies delay in permeability transition by preconditioning with isoflurane: roles of ROS and Ca2+.
    Sedlic F; Sepac A; Pravdic D; Camara AK; Bienengraeber M; Brzezinska AK; Wakatsuki T; Bosnjak ZJ
    Am J Physiol Cell Physiol; 2010 Aug; 299(2):C506-15. PubMed ID: 20519447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling cardiac action potential shortening driven by oxidative stress-induced mitochondrial oscillations in guinea pig cardiomyocytes.
    Zhou L; Cortassa S; Wei AC; Aon MA; Winslow RL; O'Rourke B
    Biophys J; 2009 Oct; 97(7):1843-52. PubMed ID: 19804714
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inorganic polyphosphate is a potent activator of the mitochondrial permeability transition pore in cardiac myocytes.
    Seidlmayer LK; Gomez-Garcia MR; Blatter LA; Pavlov E; Dedkova EN
    J Gen Physiol; 2012 May; 139(5):321-31. PubMed ID: 22547663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Local control of mitochondrial membrane potential, permeability transition pore and reactive oxygen species by calcium and calmodulin in rat ventricular myocytes.
    Odagiri K; Katoh H; Kawashima H; Tanaka T; Ohtani H; Saotome M; Urushida T; Satoh H; Hayashi H
    J Mol Cell Cardiol; 2009 Jun; 46(6):989-97. PubMed ID: 19318235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorylation of cyclophilin D at serine 191 regulates mitochondrial permeability transition pore opening and cell death after ischemia-reperfusion.
    Hurst S; Gonnot F; Dia M; Crola Da Silva C; Gomez L; Sheu SS
    Cell Death Dis; 2020 Aug; 11(8):661. PubMed ID: 32814770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.