These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 20409483)

  • 1. The behavior of the hydrophobic effect under pressure and protein denaturation.
    Grigera JR; McCarthy AN
    Biophys J; 2010 Apr; 98(8):1626-31. PubMed ID: 20409483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of hydrophobicity in the cold denaturation of proteins under high pressure: A study on apomyoglobin.
    Espinosa YR; Caffarena ER; Grigera JR
    J Chem Phys; 2019 Feb; 150(7):075102. PubMed ID: 30795674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pressure denaturation of apomyoglobin: a molecular dynamics simulation study.
    McCarthy AN; Grigera JR
    Biochim Biophys Acta; 2006 Mar; 1764(3):506-15. PubMed ID: 16504610
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computer simulations of the refolding of sperm whale apomyoglobin from high-temperature denaturated state.
    Dametto M; Cárdenas AE
    J Phys Chem B; 2008 Aug; 112(31):9501-6. PubMed ID: 18616314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of conventional molecular dynamics simulation in evaluating the stability of apomyoglobin in urea solution.
    Zhang D; Lazim R
    Sci Rep; 2017 Mar; 7():44651. PubMed ID: 28300210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diffusive motions control the folding and unfolding kinetics of the apomyoglobin pH 4 molten globule intermediate.
    Ramos CH; Weisbuch S; Jamin M
    Biochemistry; 2007 Apr; 46(14):4379-89. PubMed ID: 17367166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling transient collapsed states of an unfolded protein to provide insights into early folding events.
    Felitsky DJ; Lietzow MA; Dyson HJ; Wright PE
    Proc Natl Acad Sci U S A; 2008 Apr; 105(17):6278-83. PubMed ID: 18434548
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Folding intermediate and folding nucleus for I-->N and U-->I-->N transitions in apomyoglobin: contributions by conserved and nonconserved residues.
    Samatova EN; Melnik BS; Balobanov VA; Katina NS; Dolgikh DA; Semisotnov GV; Finkelstein AV; Bychkova VE
    Biophys J; 2010 Apr; 98(8):1694-702. PubMed ID: 20409491
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Defining the interacting regions between apomyoglobin and lipid membrane by hydrogen/deuterium exchange coupled to mass spectrometry.
    Man P; Montagner C; Vernier G; Dublet B; Chenal A; Forest E; Forge V
    J Mol Biol; 2007 Apr; 368(2):464-72. PubMed ID: 17346745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics simulations of the unfolding of apomyoglobin in water.
    Tirado-Rives J; Jorgensen WL
    Biochemistry; 1993 Apr; 32(16):4175-84. PubMed ID: 8476847
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Apomyoglobin folding intermediates characterized by the hydrophobic fluorescent probe 8-anilino-1-naphthalene sulfonate.
    Sirangelo I; Bismuto E; Tavassi S; Irace G
    Biochim Biophys Acta; 1998 Jun; 1385(1):69-77. PubMed ID: 9630524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Site-specific hydration dynamics in the nonpolar core of a molten globule by dynamic nuclear polarization of water.
    Armstrong BD; Choi J; López C; Wesener DA; Hubbell W; Cavagnero S; Han S
    J Am Chem Soc; 2011 Apr; 133(15):5987-95. PubMed ID: 21443207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Construction of glycosylated myoglobin by reconstitutional method.
    Matsuo T; Nagai H; Hisaeda Y; Hayashi T
    Chem Commun (Camb); 2006 Aug; (29):3131-3. PubMed ID: 16855709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new folding intermediate of apomyoglobin from Aplysia limacina: stepwise formation of a molten globule.
    Staniforth RA; Giannini S; Bigotti MG; Cutruzzolà F; Travaglini-Allocatelli C; Brunori M
    J Mol Biol; 2000 Apr; 297(5):1231-44. PubMed ID: 10764586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dynamics simulations of isolated helices of myoglobin.
    Hirst JD; Brooks CL
    Biochemistry; 1995 Jun; 34(23):7614-21. PubMed ID: 7779807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural characterization of unfolded states of apomyoglobin using residual dipolar couplings.
    Mohana-Borges R; Goto NK; Kroon GJ; Dyson HJ; Wright PE
    J Mol Biol; 2004 Jul; 340(5):1131-42. PubMed ID: 15236972
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intermediate States of Apomyoglobin: Are They Parts of the Same Area of Conformations Diagram?
    Balobanov VA; Katina NS; Finkelstein AV; Bychkova VE
    Biochemistry (Mosc); 2017 May; 82(5):625-631. PubMed ID: 28601072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cold denaturation of the molten globule states of apomyoglobin and a profile for protein folding.
    Nishii I; Kataoka M; Tokunaga F; Goto Y
    Biochemistry; 1994 Apr; 33(16):4903-9. PubMed ID: 8161550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Specificity of native-like interhelical hydrophobic contacts in the apomyoglobin intermediate.
    Kay MS; Ramos CH; Baldwin RL
    Proc Natl Acad Sci U S A; 1999 Mar; 96(5):2007-12. PubMed ID: 10051585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural origins of pH and ionic strength effects on protein stability. Acid denaturation of sperm whale apomyoglobin.
    Yang AS; Honig B
    J Mol Biol; 1994 Apr; 237(5):602-14. PubMed ID: 8158640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.