These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 20409484)

  • 1. Stiffening of individual fibrin fibers equitably distributes strain and strengthens networks.
    Hudson NE; Houser JR; O'Brien ET; Taylor RM; Superfine R; Lord ST; Falvo MR
    Biophys J; 2010 Apr; 98(8):1632-40. PubMed ID: 20409484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence that αC region is origin of low modulus, high extensibility, and strain stiffening in fibrin fibers.
    Houser JR; Hudson NE; Ping L; O'Brien ET; Superfine R; Lord ST; Falvo MR
    Biophys J; 2010 Nov; 99(9):3038-47. PubMed ID: 21044602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contribution of nascent cohesive fiber-fiber interactions to the non-linear elasticity of fibrin networks under tensile load.
    Britton S; Kim O; Pancaldi F; Xu Z; Litvinov RI; Weisel JW; Alber M
    Acta Biomater; 2019 Aug; 94():514-523. PubMed ID: 31152942
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recombinant fibrinogen reveals the differential roles of α- and γ-chain cross-linking and molecular heterogeneity in fibrin clot strain-stiffening.
    Piechocka IK; Kurniawan NA; Grimbergen J; Koopman J; Koenderink GH
    J Thromb Haemost; 2017 May; 15(5):938-949. PubMed ID: 28166607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-scale strain-stiffening of semiflexible bundle networks.
    Piechocka IK; Jansen KA; Broedersz CP; Kurniawan NA; MacKintosh FC; Koenderink GH
    Soft Matter; 2016 Feb; 12(7):2145-56. PubMed ID: 26761718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The mechanical properties of single fibrin fibers.
    Liu W; Carlisle CR; Sparks EA; Guthold M
    J Thromb Haemost; 2010 May; 8(5):1030-6. PubMed ID: 20088938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic remodeling of fiber networks with stiff inclusions under compressive loading.
    Carroll B; Thanh MH; Patteson AE
    Acta Biomater; 2023 Jun; 163():106-116. PubMed ID: 36182057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strength and deformability of fibrin clots: Biomechanics, thermodynamics, and mechanisms of rupture.
    Tutwiler V; Maksudov F; Litvinov RI; Weisel JW; Barsegov V
    Acta Biomater; 2021 Sep; 131():355-369. PubMed ID: 34233219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanics, Energetics, and Structural Basis of Rupture of Fibrin Networks.
    Ramanujam RK; Maksudov F; Litvinov RI; Nagaswami C; Weisel JW; Tutwiler V; Barsegov V
    Adv Healthc Mater; 2023 Oct; 12(27):e2300096. PubMed ID: 37611209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlinear elasticity of stiff filament networks: strain stiffening, negative normal stress, and filament alignment in fibrin gels.
    Kang H; Wen Q; Janmey PA; Tang JX; Conti E; MacKintosh FC
    J Phys Chem B; 2009 Mar; 113(12):3799-805. PubMed ID: 19243107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A constitutive model for the time-dependent, nonlinear stress response of fibrin networks.
    van Kempen TH; Peters GW; van de Vosse FN
    Biomech Model Mechanobiol; 2015 Oct; 14(5):995-1006. PubMed ID: 25618024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiscale Network Modeling of Fibrin Fibers and Fibrin Clots with Protofibril Binding Mechanics.
    Yesudasan S; Averett RD
    Polymers (Basel); 2020 May; 12(6):. PubMed ID: 32471225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Submillisecond elastic recoil reveals molecular origins of fibrin fiber mechanics.
    Hudson NE; Ding F; Bucay I; O'Brien ET; Gorkun OV; Superfine R; Lord ST; Dokholyan NV; Falvo MR
    Biophys J; 2013 Jun; 104(12):2671-80. PubMed ID: 23790375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micro-tensile rheology of fibrous gels quantifies strain-dependent anisotropy.
    Goren S; Ergaz B; Barak D; Sorkin R; Lesman A
    Acta Biomater; 2024 Jun; 181():272-281. PubMed ID: 38685460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural basis for the nonlinear mechanics of fibrin networks under compression.
    Kim OV; Litvinov RI; Weisel JW; Alber MS
    Biomaterials; 2014 Aug; 35(25):6739-49. PubMed ID: 24840618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inherent fibrin fiber tension propels mechanisms of network clearance during fibrinolysis.
    Cone SJ; Fuquay AT; Litofsky JM; Dement TC; Carolan CA; Hudson NE
    Acta Biomater; 2020 Apr; 107():164-177. PubMed ID: 32105833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visualization and mechanical manipulations of individual fibrin fibers suggest that fiber cross section has fractal dimension 1.3.
    Guthold M; Liu W; Stephens B; Lord ST; Hantgan RR; Erie DA; Taylor RM; Superfine R
    Biophys J; 2004 Dec; 87(6):4226-36. PubMed ID: 15465869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural hierarchy governs fibrin gel mechanics.
    Piechocka IK; Bacabac RG; Potters M; Mackintosh FC; Koenderink GH
    Biophys J; 2010 May; 98(10):2281-9. PubMed ID: 20483337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical properties of subisostatic random networks composed of nonlinear fibers.
    Hatami-Marbini H; Rohanifar M
    Soft Matter; 2020 Aug; 16(30):7156-7164. PubMed ID: 32671376
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Revealing the molecular origins of fibrin's elastomeric properties by in situ X-ray scattering.
    Vos BE; Martinez-Torres C; Burla F; Weisel JW; Koenderink GH
    Acta Biomater; 2020 Mar; 104():39-52. PubMed ID: 31923718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.