BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 20409580)

  • 1. The effect of spacer arm length of an adhesion ligand coupled to an alginate gel on the control of fibroblast phenotype.
    Lee JW; Park YJ; Lee SJ; Lee SK; Lee KY
    Biomaterials; 2010 Jul; 31(21):5545-51. PubMed ID: 20409580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of spacer arm length between adhesion ligand and alginate hydrogel on stem cell differentiation.
    Lee JW; Kim H; Lee KY
    Carbohydr Polym; 2016 Mar; 139():82-9. PubMed ID: 26794950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An alginate hydrogel matrix for the localised delivery of a fibroblast/keratinocyte co-culture.
    Hunt NC; Shelton RM; Grover L
    Biotechnol J; 2009 May; 4(5):730-7. PubMed ID: 19452469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study on the potential of RGD- and PHSRN-modified alginates as artificial extracellular matrices for engineering bone.
    Nakaoka R; Hirano Y; Mooney DJ; Tsuchiya T; Matsuoka A
    J Artif Organs; 2013 Sep; 16(3):284-93. PubMed ID: 23512309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biodegradable, photocrosslinked alginate hydrogels with independently tailorable physical properties and cell adhesivity.
    Jeon O; Powell C; Ahmed SM; Alsberg E
    Tissue Eng Part A; 2010 Sep; 16(9):2915-25. PubMed ID: 20486798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transition of mechanical property of porous alginate scaffold with cells during culture period.
    Sakai S; Masuhara H; Yamada Y; Ono T; Ijima H; Kawakami K
    J Biosci Bioeng; 2005 Jul; 100(1):127-9. PubMed ID: 16233864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shear-reversibly crosslinked alginate hydrogels for tissue engineering.
    Park H; Kang SW; Kim BS; Mooney DJ; Lee KY
    Macromol Biosci; 2009 Sep; 9(9):895-901. PubMed ID: 19422012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chitosan-alginate as scaffolding material for cartilage tissue engineering.
    Li Z; Zhang M
    J Biomed Mater Res A; 2005 Nov; 75(2):485-93. PubMed ID: 16092113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds.
    Awad HA; Wickham MQ; Leddy HA; Gimble JM; Guilak F
    Biomaterials; 2004 Jul; 25(16):3211-22. PubMed ID: 14980416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real time responses of fibroblasts to plastically compressed fibrillar collagen hydrogels.
    Ghezzi CE; Muja N; Marelli B; Nazhat SN
    Biomaterials; 2011 Jul; 32(21):4761-72. PubMed ID: 21514662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alginate hydrogels as biomaterials.
    Augst AD; Kong HJ; Mooney DJ
    Macromol Biosci; 2006 Aug; 6(8):623-33. PubMed ID: 16881042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional sprayed active biological gels and cells for tissue engineering application.
    Facca S; Gillet P; Stoltz JF; Netter P; Mainard D; Voegel JC; Benkirane-Jessel N
    Biomed Mater Eng; 2008; 18(4-5):231-5. PubMed ID: 19065027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlling alginate gel degradation utilizing partial oxidation and bimodal molecular weight distribution.
    Boontheekul T; Kong HJ; Mooney DJ
    Biomaterials; 2005 May; 26(15):2455-65. PubMed ID: 15585248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-cross-linking biopolymers as injectable in situ forming biodegradable scaffolds.
    Balakrishnan B; Jayakrishnan A
    Biomaterials; 2005 Jun; 26(18):3941-51. PubMed ID: 15626441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecularly designed alginate hydrogels susceptible to local proteolysis as three-dimensional cellular microenvironments.
    Fonseca KB; Bidarra SJ; Oliveira MJ; Granja PL; Barrias CC
    Acta Biomater; 2011 Apr; 7(4):1674-82. PubMed ID: 21193068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alginate microcapsules prepared with xyloglucan as a synthetic extracellular matrix for hepatocyte attachment.
    Seo SJ; Akaike T; Choi YJ; Shirakawa M; Kang IK; Cho CS
    Biomaterials; 2005 Jun; 26(17):3607-15. PubMed ID: 15621251
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and characterization of core-shell mPEG-PLGA composite microparticles for development of cell-scaffold constructs.
    Wen Y; Gallego MR; Nielsen LF; Jorgensen L; Møller EH; Nielsen HM
    Eur J Pharm Biopharm; 2013 Sep; 85(1):87-98. PubMed ID: 23958320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chitosan-alginate hybrid scaffolds for bone tissue engineering.
    Li Z; Ramay HR; Hauch KD; Xiao D; Zhang M
    Biomaterials; 2005 Jun; 26(18):3919-28. PubMed ID: 15626439
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Octacalcium phosphate-precipitated alginate scaffold for bone regeneration.
    Fuji T; Anada T; Honda Y; Shiwaku Y; Koike H; Kamakura S; Sasaki K; Suzuki O
    Tissue Eng Part A; 2009 Nov; 15(11):3525-35. PubMed ID: 19456237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of processing parameters on pore structure of 3D porous chitosan-alginate polyelectrolyte complex scaffolds.
    Florczyk SJ; Kim DJ; Wood DL; Zhang M
    J Biomed Mater Res A; 2011 Sep; 98(4):614-20. PubMed ID: 21721118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.