BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

375 related articles for article (PubMed ID: 20410138)

  • 1. O-GlcNAc cycling enzymes associate with the translational machinery and modify core ribosomal proteins.
    Zeidan Q; Wang Z; De Maio A; Hart GW
    Mol Biol Cell; 2010 Jun; 21(12):1922-36. PubMed ID: 20410138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. O-linked beta-N-acetylglucosamine (O-GlcNAc): Extensive crosstalk with phosphorylation to regulate signaling and transcription in response to nutrients and stress.
    Butkinaree C; Park K; Hart GW
    Biochim Biophys Acta; 2010 Feb; 1800(2):96-106. PubMed ID: 19647786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cross-talk between two essential nutrient-sensitive enzymes: O-GlcNAc transferase (OGT) and AMP-activated protein kinase (AMPK).
    Bullen JW; Balsbaugh JL; Chanda D; Shabanowitz J; Hunt DF; Neumann D; Hart GW
    J Biol Chem; 2014 Apr; 289(15):10592-10606. PubMed ID: 24563466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feedback Regulation of
    Lin CH; Liao CC; Chen MY; Chou TY
    Int J Mol Sci; 2021 Mar; 22(7):. PubMed ID: 33801653
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tandem mass spectrometry identifies many mouse brain O-GlcNAcylated proteins including EGF domain-specific O-GlcNAc transferase targets.
    Alfaro JF; Gong CX; Monroe ME; Aldrich JT; Clauss TR; Purvine SO; Wang Z; Camp DG; Shabanowitz J; Stanley P; Hart GW; Hunt DF; Yang F; Smith RD
    Proc Natl Acad Sci U S A; 2012 May; 109(19):7280-5. PubMed ID: 22517741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A mitotic GlcNAcylation/phosphorylation signaling complex alters the posttranslational state of the cytoskeletal protein vimentin.
    Slawson C; Lakshmanan T; Knapp S; Hart GW
    Mol Biol Cell; 2008 Oct; 19(10):4130-40. PubMed ID: 18653473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Beta-N-acetylglucosamine (O-GlcNAc) is part of the histone code.
    Sakabe K; Wang Z; Hart GW
    Proc Natl Acad Sci U S A; 2010 Nov; 107(46):19915-20. PubMed ID: 21045127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intracellular protein O-GlcNAc modification integrates nutrient status with transcriptional and metabolic regulation.
    Nagel AK; Ball LE
    Adv Cancer Res; 2015; 126():137-66. PubMed ID: 25727147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. O-GlcNAc modification affects the ATM-mediated DNA damage response.
    Miura Y; Sakurai Y; Endo T
    Biochim Biophys Acta; 2012 Oct; 1820(10):1678-85. PubMed ID: 22759405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comprehensive mapping of O-GlcNAc modification sites using a chemically cleavable tag.
    Griffin ME; Jensen EH; Mason DE; Jenkins CL; Stone SE; Peters EC; Hsieh-Wilson LC
    Mol Biosyst; 2016 May; 12(6):1756-9. PubMed ID: 27063346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distributive O-GlcNAcylation on the Highly Repetitive C-Terminal Domain of RNA Polymerase II.
    Lu L; Fan D; Hu CW; Worth M; Ma ZX; Jiang J
    Biochemistry; 2016 Feb; 55(7):1149-58. PubMed ID: 26807597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. O-GlcNAc cycling: implications for neurodegenerative disorders.
    Lazarus BD; Love DC; Hanover JA
    Int J Biochem Cell Biol; 2009 Nov; 41(11):2134-46. PubMed ID: 19782947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nutrient-driven O-GlcNAc cycling - think globally but act locally.
    Harwood KR; Hanover JA
    J Cell Sci; 2014 May; 127(Pt 9):1857-67. PubMed ID: 24762810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Beginner's Guide to
    Mannino MP; Hart GW
    Front Immunol; 2022; 13():828648. PubMed ID: 35173739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. O-GlcNAcylation Antagonizes Phosphorylation of CDH1 (CDC20 Homologue 1).
    Tian J; Geng Q; Ding Y; Liao J; Dong MQ; Xu X; Li J
    J Biol Chem; 2016 Jun; 291(23):12136-44. PubMed ID: 27080259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decreasing O-GlcNAcylation affects the malignant transformation of MCF-7 cells via Hsp27 expression and its O-GlcNAc modification.
    Netsirisawan P; Chaiyawat P; Chokchaichamnankit D; Lirdprapamongkol K; Srisomsap C; Svasti J; Champattanachai V
    Oncol Rep; 2018 Oct; 40(4):2193-2205. PubMed ID: 30106436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical tools to explore nutrient-driven O-GlcNAc cycling.
    Kim EJ; Bond MR; Love DC; Hanover JA
    Crit Rev Biochem Mol Biol; 2014; 49(4):327-42. PubMed ID: 25039763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of O-GlcNAc cycling and proteomic identification of differentially O-GlcNAcylated proteins during G1/S transition.
    Drougat L; Olivier-Van Stichelen S; Mortuaire M; Foulquier F; Lacoste AS; Michalski JC; Lefebvre T; Vercoutter-Edouart AS
    Biochim Biophys Acta; 2012 Dec; 1820(12):1839-48. PubMed ID: 22967762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. OGT: a short overview of an enzyme standing out from usual glycosyltransferases.
    Aquino-Gil M; Pierce A; Perez-Cervera Y; Zenteno E; Lefebvre T
    Biochem Soc Trans; 2017 Apr; 45(2):365-370. PubMed ID: 28408476
    [No Abstract]   [Full Text] [Related]  

  • 20. Nucleocytoplasmic O-glycosylation: O-GlcNAc and functional proteomics.
    Vosseller K; Wells L; Hart GW
    Biochimie; 2001 Jul; 83(7):575-81. PubMed ID: 11522385
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.