These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 20410357)

  • 21. Morphological and electrophysiological properties of GABAergic and non-GABAergic cells in the deep cerebellar nuclei.
    Uusisaari M; Obata K; Knöpfel T
    J Neurophysiol; 2007 Jan; 97(1):901-11. PubMed ID: 17093116
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Imaging synaptically mediated responses produced by brainstem inputs onto identified spinal neurons in the neonatal mouse.
    Szokol K; Perreault MC
    J Neurosci Methods; 2009 May; 180(1):1-8. PubMed ID: 19427523
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pre- and postsynaptic modulation of glycinergic and gabaergic transmission by muscarinic receptors on rat hypoglossal motoneurons in vitro.
    Pagnotta SE; Lape R; Quitadamo C; Nistri A
    Neuroscience; 2005; 130(3):783-95. PubMed ID: 15590160
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inhibition of spinal or hypoglossal motoneurons of the newborn rat by glycine or GABA.
    Marchetti C; Pagnotta S; Donato R; Nistri A
    Eur J Neurosci; 2002 Mar; 15(6):975-83. PubMed ID: 11918657
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Activation of group I metabotropic glutamate receptors depresses recurrent inhibition of motoneurons in the neonatal rat spinal cord in vitro.
    Marchetti C; Taccola G; Nistri A
    Exp Brain Res; 2005 Jul; 164(3):406-10. PubMed ID: 15991027
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Target selection of proprioceptive and motor axon synapses on neonatal V1-derived Ia inhibitory interneurons and Renshaw cells.
    Siembab VC; Smith CA; Zagoraiou L; Berrocal MC; Mentis GZ; Alvarez FJ
    J Comp Neurol; 2010 Dec; 518(23):4675-701. PubMed ID: 20963823
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genetically defined inhibitory neurons in the mouse spinal cord dorsal horn: a possible source of rhythmic inhibition of motoneurons during fictive locomotion.
    Wilson JM; Blagovechtchenski E; Brownstone RM
    J Neurosci; 2010 Jan; 30(3):1137-48. PubMed ID: 20089922
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regulation of gephyrin cluster size and inhibitory synaptic currents on Renshaw cells by motor axon excitatory inputs.
    Gonzalez-Forero D; Pastor AM; Geiman EJ; Benítez-Temiño B; Alvarez FJ
    J Neurosci; 2005 Jan; 25(2):417-29. PubMed ID: 15647485
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Asymmetric operation of the locomotor central pattern generator in the neonatal mouse spinal cord.
    Endo T; Kiehn O
    J Neurophysiol; 2008 Dec; 100(6):3043-54. PubMed ID: 18829847
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The recurrent case for the Renshaw cell.
    Bhumbra GS; Bannatyne BA; Watanabe M; Todd AJ; Maxwell DJ; Beato M
    J Neurosci; 2014 Sep; 34(38):12919-32. PubMed ID: 25232126
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An in vitro spinal cord slice preparation for recording from lumbar motoneurons of the adult mouse.
    Mitra P; Brownstone RM
    J Neurophysiol; 2012 Jan; 107(2):728-41. PubMed ID: 22031766
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Excitation of lumbar motoneurons by the medial longitudinal fasciculus in the in vitro brain stem spinal cord preparation of the neonatal rat.
    Floeter MK; Lev-Tov A
    J Neurophysiol; 1993 Dec; 70(6):2241-50. PubMed ID: 8120580
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Differential postnatal maturation of GABAA, glycine receptor, and mixed synaptic currents in Renshaw cells and ventral spinal interneurons.
    González-Forero D; Alvarez FJ
    J Neurosci; 2005 Feb; 25(8):2010-23. PubMed ID: 15728841
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cellular and synaptic actions of acetylcholine in the lamprey spinal cord.
    Quinlan KA; Buchanan JT
    J Neurophysiol; 2008 Aug; 100(2):1020-31. PubMed ID: 18550725
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of the circuits that generate spontaneous episodes of activity in the early embryonic mouse spinal cord.
    Hanson MG; Landmesser LT
    J Neurosci; 2003 Jan; 23(2):587-600. PubMed ID: 12533619
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Statistical computer model analysis of the reciprocal and recurrent inhibitory postsynaptic potentials in alpha-motoneurons.
    Gradwohl G; Grossman Y
    Neural Comput; 2010 Jul; 22(7):1764-85. PubMed ID: 20235819
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inhibitory interneurons show early dysfunction in a SOD1 mouse model of amyotrophic lateral sclerosis.
    Cavarsan CF; Steele PR; Genry LT; Reedich EJ; McCane LM; LaPre KJ; Puritz AC; Manuel M; Katenka N; Quinlan KA
    J Physiol; 2023 Feb; 601(3):647-667. PubMed ID: 36515374
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Whole cell recordings from visualized neurons in the inner laminae of the functionally intact spinal cord.
    Dyck J; Gosgnach S
    J Neurophysiol; 2009 Jul; 102(1):590-7. PubMed ID: 19386756
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The role of Renshaw cells in locomotion: antagonism of their excitation from motor axon collaterals with intravenous mecamylamine.
    Noga BR; Shefchyk SJ; Jamal J; Jordan LM
    Exp Brain Res; 1987; 66(1):99-105. PubMed ID: 3582539
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ia inhibitory interneurons and Renshaw cells as contributors to the spinal mechanisms of fictive locomotion.
    Pratt CA; Jordan LM
    J Neurophysiol; 1987 Jan; 57(1):56-71. PubMed ID: 3559681
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.