These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
271 related articles for article (PubMed ID: 20410357)
41. Adenosine-mediated modulation of ventral horn interneurons and spinal motoneurons in neonatal mice. Witts EC; Nascimento F; Miles GB J Neurophysiol; 2015 Oct; 114(4):2305-15. PubMed ID: 26311185 [TBL] [Abstract][Full Text] [Related]
42. Persistent Sodium Current Drives Excitability of Immature Renshaw Cells in Early Embryonic Spinal Networks. Boeri J; Le Corronc H; Lejeune FX; Le Bras B; Mouffle C; Angelim MKSC; Mangin JM; Branchereau P; Legendre P; Czarnecki A J Neurosci; 2018 Aug; 38(35):7667-7682. PubMed ID: 30012693 [TBL] [Abstract][Full Text] [Related]
43. Properties of a distinct subpopulation of GABAergic commissural interneurons that are part of the locomotor circuitry in the neonatal spinal cord. Wu L; Sonner PM; Titus DJ; Wiesner EP; Alvarez FJ; Ziskind-Conhaim L J Neurosci; 2011 Mar; 31(13):4821-33. PubMed ID: 21451020 [TBL] [Abstract][Full Text] [Related]
44. Acetylcholine controls GABA-, glutamate-, and glycine-dependent giant depolarizing potentials that govern spontaneous motoneuron activity at the onset of synaptogenesis in the mouse embryonic spinal cord. Czarnecki A; Le Corronc H; Rigato C; Le Bras B; Couraud F; Scain AL; Allain AE; Mouffle C; Bullier E; Mangin JM; Branchereau P; Legendre P J Neurosci; 2014 Apr; 34(18):6389-404. PubMed ID: 24790209 [TBL] [Abstract][Full Text] [Related]
45. Properties of nicotinic receptors underlying Renshaw cell excitation by alpha-motor neurons in neonatal rat spinal cord. Dourado M; Sargent PB J Neurophysiol; 2002 Jun; 87(6):3117-25. PubMed ID: 12037212 [TBL] [Abstract][Full Text] [Related]
46. Differential effects of stimulation of the cat's red nucleus on lumbar alpha motoneurones and their Renshaw cells. Henatsch HD; Meyer-Lohmann J; Windhorst U; Schmidt J Exp Brain Res; 1986; 62(1):161-74. PubMed ID: 3956631 [TBL] [Abstract][Full Text] [Related]
47. Mammalian motor neurons corelease glutamate and acetylcholine at central synapses. Nishimaru H; Restrepo CE; Ryge J; Yanagawa Y; Kiehn O Proc Natl Acad Sci U S A; 2005 Apr; 102(14):5245-9. PubMed ID: 15781854 [TBL] [Abstract][Full Text] [Related]
48. Recurrent excitation of motoneurons in the isolated spinal cord of newborn rats detected by whole-cell recording. Ichinose T; Miyata Y Neurosci Res; 1998 Jul; 31(3):179-87. PubMed ID: 9809663 [TBL] [Abstract][Full Text] [Related]
49. Early postnatal development of reciprocal Ia inhibition in the murine spinal cord. Wang Z; Li L; Goulding M; Frank E J Neurophysiol; 2008 Jul; 100(1):185-96. PubMed ID: 18463181 [TBL] [Abstract][Full Text] [Related]
50. Interneurons Differentially Contribute to Spontaneous Network Activity in the Developing Hippocampus Dependent on Their Embryonic Lineage. Wester JC; McBain CJ J Neurosci; 2016 Mar; 36(9):2646-62. PubMed ID: 26937006 [TBL] [Abstract][Full Text] [Related]
51. Excitatory actions of ventral root stimulation during network activity generated by the disinhibited neonatal mouse spinal cord. Bonnot A; Chub N; Pujala A; O'Donovan MJ J Neurophysiol; 2009 Jun; 101(6):2995-3011. PubMed ID: 19321640 [TBL] [Abstract][Full Text] [Related]
52. Spinal inhibitory circuits and their role in motor neuron degeneration. Ramírez-Jarquín UN; Lazo-Gómez R; Tovar-Y-Romo LB; Tapia R Neuropharmacology; 2014 Jul; 82():101-7. PubMed ID: 24157492 [TBL] [Abstract][Full Text] [Related]
53. Orexinergic Modulation of Spinal Motor Activity in the Neonatal Mouse Spinal Cord. Biswabharati S; Jean-Xavier C; Eaton SEA; Lognon AP; Brett R; Hardjasa L; Whelan PJ eNeuro; 2018; 5(5):. PubMed ID: 30417080 [TBL] [Abstract][Full Text] [Related]
54. Recurrent excitation between motoneurones propagates across segments and is purely glutamatergic. Bhumbra GS; Beato M PLoS Biol; 2018 Mar; 16(3):e2003586. PubMed ID: 29538375 [TBL] [Abstract][Full Text] [Related]
55. Low-threshold primary afferent drive onto GABAergic interneurons in the superficial dorsal horn of the mouse. Daniele CA; MacDermott AB J Neurosci; 2009 Jan; 29(3):686-95. PubMed ID: 19158295 [TBL] [Abstract][Full Text] [Related]
57. Alterations in hypoglossal motor neurons due to GAD67 and VGAT deficiency in mice. Fogarty MJ; Kanjhan R; Yanagawa Y; Noakes PG; Bellingham MC Exp Neurol; 2017 Mar; 289():117-127. PubMed ID: 27956032 [TBL] [Abstract][Full Text] [Related]
58. Input-output relations in the pathway of recurrent inhibition to motoneurones in the cat. Hultborn H; Pierrot-Deseilligny E J Physiol; 1979 Dec; 297(0):267-87. PubMed ID: 231651 [TBL] [Abstract][Full Text] [Related]
59. Segmental organization of vestibulospinal inputs to spinal interneurons mediating crossed activation of thoracolumbar motoneurons in the neonatal mouse. Kasumacic N; Lambert FM; Coulon P; Bras H; Vinay L; Perreault MC; Glover JC J Neurosci; 2015 May; 35(21):8158-69. PubMed ID: 26019332 [TBL] [Abstract][Full Text] [Related]
60. Synaptic Excitation in Spinal Motoneurons Alternates with Synaptic Inhibition and Is Balanced by Outward Rectification during Rhythmic Motor Network Activity. Guzulaitis R; Hounsgaard J J Neurosci; 2017 Sep; 37(38):9239-9248. PubMed ID: 28842417 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]