BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 20410613)

  • 1. Inhibitory and stimulative effects of amiodarone on metabolism of carvedilol in human liver microsomes.
    Horiuchi I; Kato Y; Nakamura A; Ishida K; Taguchi M; Hashimoto Y
    Biol Pharm Bull; 2010; 33(4):717-20. PubMed ID: 20410613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutual inhibition between carvedilol enantiomers during racemate glucuronidation mediated by human liver and intestinal microsomes.
    Takekuma Y; Yagisawa K; Sugawara M
    Biol Pharm Bull; 2012; 35(2):151-63. PubMed ID: 22293344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Vitro Enhancement of Carvedilol Glucuronidation by Amiodarone-Mediated Altered Protein Binding in Incubation Mixture of Human Liver Microsomes with Bovine Serum Albumin.
    Sekimoto M; Takamori T; Nakamura S; Taguchi M
    Biol Pharm Bull; 2016; 39(8):1359-63. PubMed ID: 27476943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of chronic hypoxic hypoxia on oxidation and glucuronidation of carvedilol in rats.
    Yamaura S; Fukao M; Ishida K; Taguchi M; Hashimoto Y
    Eur J Drug Metab Pharmacokinet; 2014 Mar; 39(1):53-9. PubMed ID: 23739952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stereoselective oxidation and glucuronidation of carvedilol in human liver and intestinal microsomes.
    Ishida K; Taira S; Morishita H; Kayano Y; Taguchi M; Hashimoto Y
    Biol Pharm Bull; 2008 Jun; 31(6):1297-300. PubMed ID: 18520073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stereoselective glucuronidation of carvedilol in human liver and intestinal microsomes.
    Hanioka N; Tanaka S; Moriguchi Y; Narimatsu S
    Pharmacology; 2012; 90(3-4):117-24. PubMed ID: 22814440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stereoselective effect of amiodarone on the pharmacokinetics of racemic carvedilol.
    Fukumoto K; Kobayashi T; Komamura K; Kamakura S; Kitakaze M; Ueno K
    Drug Metab Pharmacokinet; 2005 Dec; 20(6):423-7. PubMed ID: 16415527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stereoselective metabolism of racemic carvedilol by UGT1A1 and UGT2B7, and effects of mutation of these enzymes on glucuronidation activity.
    Takekuma Y; Takenaka T; Yamazaki K; Ueno K; Sugawara M
    Biol Pharm Bull; 2007 Nov; 30(11):2146-53. PubMed ID: 17978490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stereoselective glucuronidation of carvedilol by Chinese liver microsomes.
    You LY; Yu CN; Xie SG; Chen SQ; Zeng S
    J Zhejiang Univ Sci B; 2007 Oct; 8(10):756-64. PubMed ID: 17910120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Involvement of the CYP1A subfamily in stereoselective metabolism of carvedilol in beta-naphthoflavone-treated Caco-2 cells.
    Ishida K; Taguchi M; Akao T; Hashimoto Y
    Biol Pharm Bull; 2009 Mar; 32(3):513-6. PubMed ID: 19252307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Involvement of human hepatic UGT1A1, UGT2B4, and UGT2B7 in the glucuronidation of carvedilol.
    Ohno A; Saito Y; Hanioka N; Jinno H; Saeki M; Ando M; Ozawa S; Sawada J
    Drug Metab Dispos; 2004 Feb; 32(2):235-9. PubMed ID: 14744946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of substrate depletion assay to evaluation of CYP isoforms responsible for stereoselective metabolism of carvedilol.
    Iwaki M; Niwa T; Bandoh S; Itoh M; Hirose H; Kawase A; Komura H
    Drug Metab Pharmacokinet; 2016 Dec; 31(6):425-432. PubMed ID: 27836712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of two major biliary metabolites of carvedilol in rats.
    Fujimaki M; Hakusui H
    Xenobiotica; 1990 Oct; 20(10):1025-34. PubMed ID: 2082592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The inhibitory effect of amiodarone and desethylamiodarone on dextromethorphan O-demethylation in human and rat liver microsomes.
    Jaruratanasirikul S; Hortiwakul R
    J Pharm Pharmacol; 1994 Nov; 46(11):933-5. PubMed ID: 7897605
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relative contribution of rat CYP isoforms responsible for stereoselective metabolism of carvedilol.
    Iwaki M; Niwa T; Nakamura Y; Kawase A; Komura H
    J Toxicol Sci; 2018; 43(1):59-63. PubMed ID: 29415952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibitory effects of amiodarone and its N-deethylated metabolite on human cytochrome P450 activities: prediction of in vivo drug interactions.
    Ohyama K; Nakajima M; Suzuki M; Shimada N; Yamazaki H; Yokoi T
    Br J Clin Pharmacol; 2000 Mar; 49(3):244-53. PubMed ID: 10718780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of a carbamoyl glucuronide conjugate of carvedilol in vitro using dog and rat liver microsomes.
    Schaefer WH
    Drug Metab Dispos; 1992; 20(1):130-3. PubMed ID: 1346989
    [No Abstract]   [Full Text] [Related]  

  • 18. The mechanism of the interaction between amiodarone and warfarin in humans.
    Heimark LD; Wienkers L; Kunze K; Gibaldi M; Eddy AC; Trager WF; O'Reilly RA; Goulart DA
    Clin Pharmacol Ther; 1992 Apr; 51(4):398-407. PubMed ID: 1563209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contribution of polymorphisms in UDP-glucuronosyltransferase and CYP2D6 to the individual variation in disposition of carvedilol.
    Takekuma Y; Takenaka T; Kiyokawa M; Yamazaki K; Okamoto H; Kitabatake A; Tsutsui H; Sugawara M
    J Pharm Pharm Sci; 2006; 9(1):101-12. PubMed ID: 16849011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidation of R(+)- and S(-)-carvedilol by rat liver microsomes. Evidence for stereoselective oxidation and characterization of the cytochrome P450 isozymes involved.
    Fujimaki M
    Drug Metab Dispos; 1994; 22(5):700-8. PubMed ID: 7835220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.