BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 20410663)

  • 21. Expression and signal regulation of the alternative oxidase genes under abiotic stresses.
    Feng H; Guan D; Sun K; Wang Y; Zhang T; Wang R
    Acta Biochim Biophys Sin (Shanghai); 2013 Dec; 45(12):985-94. PubMed ID: 24004533
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Monitoring the expression profiles of genes induced by hyperosmotic, high salinity, and oxidative stress and abscisic acid treatment in Arabidopsis cell culture using a full-length cDNA microarray.
    Takahashi S; Seki M; Ishida J; Satou M; Sakurai T; Narusaka M; Kamiya A; Nakajima M; Enju A; Akiyama K; Yamaguchi-Shinozaki K; Shinozaki K
    Plant Mol Biol; 2004 Sep; 56(1):29-55. PubMed ID: 15604727
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Low pH stress responsive transcriptome of seedling roots in wheat (Triticum aestivum L.).
    Hu H; He J; Zhao J; Ou X; Li H; Ru Z
    Genes Genomics; 2018 Nov; 40(11):1199-1211. PubMed ID: 30315523
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparative expression of five Lea Genes during wheat seed development and in response to abiotic stresses by real-time quantitative RT-PCR.
    Ali-Benali MA; Alary R; Joudrier P; Gautier MF
    Biochim Biophys Acta; 2005 Jul; 1730(1):56-65. PubMed ID: 16023228
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Variation in mitochondrial transcript profiles of protein-coding genes during early germination and seedling development in wheat.
    Li-Pook-Than J; Carrillo C; Bonen L
    Curr Genet; 2004 Dec; 46(6):374-80. PubMed ID: 15538573
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of Proteins Using iTRAQ and Virus-Induced Gene Silencing Reveals Three Bread Wheat Proteins Involved in the Response to Combined Osmotic-Cold Stress.
    Zhang N; Zhang L; Shi C; Zhao L; Cui D; Chen F
    J Proteome Res; 2018 Jul; 17(7):2256-2281. PubMed ID: 29761697
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pleiotropic effects of the wheat dehydrin DHN-5 on stress responses in Arabidopsis.
    Brini F; Yamamoto A; Jlaiel L; Takeda S; Hobo T; Dinh HQ; Hattori T; Masmoudi K; Hanin M
    Plant Cell Physiol; 2011 Apr; 52(4):676-88. PubMed ID: 21421569
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The ERF transcription factor TaERF3 promotes tolerance to salt and drought stresses in wheat.
    Rong W; Qi L; Wang A; Ye X; Du L; Liang H; Xin Z; Zhang Z
    Plant Biotechnol J; 2014 May; 12(4):468-79. PubMed ID: 24393105
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Myc-like transcriptional factors in wheat: structural and functional organization of the subfamily I members.
    Strygina KV; Khlestkina EK
    BMC Plant Biol; 2019 Feb; 19(Suppl 1):50. PubMed ID: 30813892
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genome-wide identification and expression profiling of trihelix gene family under abiotic stresses in wheat.
    Xiao J; Hu R; Gu T; Han J; Qiu D; Su P; Feng J; Chang J; Yang G; He G
    BMC Genomics; 2019 Apr; 20(1):287. PubMed ID: 30975075
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A transcriptomic analysis reveals the nature of salinity tolerance of a wheat introgression line.
    Liu C; Li S; Wang M; Xia G
    Plant Mol Biol; 2012 Jan; 78(1-2):159-69. PubMed ID: 22089973
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Heteroplasmy and expression of mitochondrial genes in alloplasmic and euplasmic wheat.
    Kawaura K; Saeki A; Masumura T; Morita S; Ogihara Y
    Genes Genet Syst; 2011; 86(4):249-55. PubMed ID: 22214593
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses.
    Rabbani MA; Maruyama K; Abe H; Khan MA; Katsura K; Ito Y; Yoshiwara K; Seki M; Shinozaki K; Yamaguchi-Shinozaki K
    Plant Physiol; 2003 Dec; 133(4):1755-67. PubMed ID: 14645724
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Positive role of a wheat HvABI5 ortholog in abiotic stress response of seedlings.
    Kobayashi F; Maeta E; Terashima A; Takumi S
    Physiol Plant; 2008 Sep; 134(1):74-86. PubMed ID: 18433415
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Wheat non-specific lipid transfer protein genes display a complex pattern of expression in developing seeds.
    Boutrot F; Guirao A; Alary R; Joudrier P; Gautier MF
    Biochim Biophys Acta; 2005 Aug; 1730(2):114-25. PubMed ID: 16061294
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana.
    Liu HH; Tian X; Li YJ; Wu CA; Zheng CC
    RNA; 2008 May; 14(5):836-43. PubMed ID: 18356539
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Differential stress responses of early salt-stress responding genes in common wheat.
    Nemoto Y; Sasakuma T
    Phytochemistry; 2002 Sep; 61(2):129-33. PubMed ID: 12169305
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Differential expression of alkaline and neutral invertases in response to environmental stresses: characterization of an alkaline isoform as a stress-response enzyme in wheat leaves.
    Vargas WA; Pontis HG; Salerno GL
    Planta; 2007 Nov; 226(6):1535-45. PubMed ID: 17674033
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Plant mitochondrial transcriptomics by quantitative RT-PCR.
    Clifton R; Whelan J
    Methods Mol Biol; 2007; 372():529-42. PubMed ID: 18314749
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Physiological and transcriptome analysis of He-Ne laser pretreated wheat seedlings in response to drought stress.
    Qiu Z; Yuan M; He Y; Li Y; Zhang L
    Sci Rep; 2017 Jul; 7(1):6108. PubMed ID: 28733678
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.