BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 20410832)

  • 1. Targeting hypertension with a new adenosine triphosphate-sensitive potassium channel opener iptakalim.
    Pan Z; Huang J; Cui W; Long C; Zhang Y; Wang H
    J Cardiovasc Pharmacol; 2010 Sep; 56(3):215-28. PubMed ID: 20410832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iptakalim, a vascular ATP-sensitive potassium (KATP) channel opener, closes rat pancreatic beta-cell KATP channels and increases insulin release.
    Misaki N; Mao X; Lin YF; Suga S; Li GH; Liu Q; Chang Y; Wang H; Wakui M; Wu J
    J Pharmacol Exp Ther; 2007 Aug; 322(2):871-8. PubMed ID: 17522344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iptakalim inhibited endothelin-1-induced proliferation of human pulmonary arterial smooth muscle cells through the activation of K(ATP) channel.
    Zhu Y; Zhang S; Xie W; Li Q; Zhou Y; Wang H
    Vascul Pharmacol; 2008; 48(2-3):92-9. PubMed ID: 18276195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation of ATP-sensitive potassium channels protects vascular endothelial cells from hypertension and renal injury induced by hyperuricemia.
    Long CL; Qin XC; Pan ZY; Chen K; Zhang YF; Cui WY; Liu GS; Wang H
    J Hypertens; 2008 Dec; 26(12):2326-38. PubMed ID: 19008712
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation of SUR2B/Kir6.1-type K(ATP) channels protects glomerular endothelial, mesangial and tubular epithelial cells against oleic acid renal damage.
    Zhao Y; Wang H
    Zhongguo Ying Yong Sheng Li Xue Za Zhi; 2012 Nov; 28(6):572-6. PubMed ID: 23581188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iptakalim protects against hypoxic brain injury through multiple pathways associated with ATP-sensitive potassium channels.
    Zhu HL; Luo WQ; Wang H
    Neuroscience; 2008 Dec; 157(4):884-94. PubMed ID: 18951957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iptakalim modulates ATP-sensitive K(+) channels in dopamine neurons from rat substantia nigra pars compacta.
    Wu J; Hu J; Chen YP; Takeo T; Suga S; Dechon J; Liu Q; Yang KC; St John PA; Hu G; Wang H; Wakui M
    J Pharmacol Exp Ther; 2006 Oct; 319(1):155-64. PubMed ID: 16837559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new ATP-sensitive potassium channel opener reduces blood pressure and reverses cardiovascular remodeling in experimental hypertension.
    Wang H; Long CL; Zhang YL
    J Pharmacol Exp Ther; 2005 Mar; 312(3):1326-33. PubMed ID: 15525792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Presence and vascular pharmacology of KATP channel subtypes in rat central and peripheral tissues.
    Ploug KB; Baun M; Hay-Schmidt A; Olesen J; Jansen-Olesen I
    Eur J Pharmacol; 2010 Jul; 637(1-3):109-17. PubMed ID: 20361954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hypoxic pulmonary hypertension (HPH) and iptakalim, a novel ATP-sensitive potassium channel opener targeting smaller arteries in hypertension.
    Wang H; Tang Y; Zhang YL
    Cardiovasc Drug Rev; 2005; 23(4):293-316. PubMed ID: 16614730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of ZD0947, a novel and potent ATP-sensitive K
    Mori K; Yamashita Y; Teramoto N
    Eur J Pharmacol; 2016 Nov; 791():773-779. PubMed ID: 27693800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Iptakalim, opener of K(ATP), reverses the enhanced expression of genes encoding K(ATP) subunits in spontaneously hypertensive rats.
    Gao M; Xue H; Wang Y; Wang H
    Life Sci; 2005 Oct; 77(22):2743-51. PubMed ID: 15964031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of K(ATP)-channels in rat basilar and middle cerebral arteries: studies of vasomotor responses and mRNA expression.
    Jansen-Olesen I; Mortensen CH; El-Bariaki N; Ploug KB
    Eur J Pharmacol; 2005 Oct; 523(1-3):109-18. PubMed ID: 16226739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new ATP-sensitive potassium channel opener protects the kidney from hypertensive damage in spontaneously hypertensive rats.
    Xue H; Zhang YL; Liu GS; Wang H
    J Pharmacol Exp Ther; 2005 Nov; 315(2):501-9. PubMed ID: 16051697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decreased expression of aortic KIR6.1 and SUR2B in hypertension does not correlate with changes in the functional role of K(ATP) channels.
    Blanco-Rivero J; Gamallo C; Aras-López R; Cobeño L; Cogolludo A; Pérez-Vizcaino F; Ferrer M; Balfagon G
    Eur J Pharmacol; 2008 Jun; 587(1-3):204-8. PubMed ID: 18471810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The new antihypertensive drug iptakalim activates ATP-sensitive potassium channels in the endothelium of resistance blood vessels.
    Wang SY; Cui WY; Wang H
    Acta Pharmacol Sin; 2015 Dec; 36(12):1444-50. PubMed ID: 26592519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. K(ATP) channel openers protect mesencephalic neurons against MPP+-induced cytotoxicity via inhibition of ROS production.
    Xie J; Duan L; Qian X; Huang X; Ding J; Hu G
    J Neurosci Res; 2010 Feb; 88(2):428-37. PubMed ID: 19746425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systematic administration of iptakalim, an ATP-sensitive potassium channel opener, prevents rotenone-induced motor and neurochemical alterations in rats.
    Yang Y; Liu X; Long Y; Wang F; Ding JH; Liu SY; Sun YH; Yao HH; Wang H; Wu J; Hu G
    J Neurosci Res; 2005 May; 80(3):442-9. PubMed ID: 15795934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pharmacological and molecular comparison of K(ATP) channels in rat basilar and middle cerebral arteries.
    Ploug KB; Edvinsson L; Olesen J; Jansen-Olesen I
    Eur J Pharmacol; 2006 Dec; 553(1-3):254-62. PubMed ID: 17101127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nucleotide modulation of pinacidil stimulation of the cloned K(ATP) channel Kir6.2/SUR2A.
    Gribble FM; Reimann F; Ashfield R; Ashcroft FM
    Mol Pharmacol; 2000 Jun; 57(6):1256-61. PubMed ID: 10825398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.