These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 20410981)

  • 41. Fluorescence spectroscopy of tissue: recovery of intrinsic fluorescence from measured fluorescence.
    Gardner CM; Jacques SL; Welch AJ
    Appl Opt; 1996 Apr; 35(10):1780-92. PubMed ID: 21085302
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Wide field fluorescence epi-microscopy behind a scattering medium enabled by speckle correlations.
    Hofer M; Soeller C; Brasselet S; Bertolotti J
    Opt Express; 2018 Apr; 26(8):9866-9881. PubMed ID: 29715932
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A confocal video-rate laser-beam scanning reflected-light microscope with no moving parts.
    Goldstein SR; Hubin T; Rosenthal S; Washburn C
    J Microsc; 1990 Jan; 157(Pt 1):29-38. PubMed ID: 2299661
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Structured illumination behind turbid media.
    Malavalli A; Ackermann M; Aegerter CM
    Opt Express; 2016 Oct; 24(20):23018-23026. PubMed ID: 27828367
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Application of the T-matrix method to determine the structure of spheroidal cell nuclei with angle-resolved light scattering.
    Giacomelli MG; Chalut KJ; Ostrander JH; Wax A
    Opt Lett; 2008 Nov; 33(21):2452-4. PubMed ID: 18978884
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Phase-space measurement for depth-resolved memory-effect imaging.
    Takasaki KT; Fleischer JW
    Opt Express; 2014 Dec; 22(25):31426-33. PubMed ID: 25607092
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Elimination of the effects of stray light in measurements by total internal reflection aqueous fluorescence (TIRAF).
    Gingell D; Heavens O
    J Microsc; 1996 May; 182(Pt 2):141-8. PubMed ID: 8683561
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Microscope enabling multimodality imaging, angle-resolved scattering, and scattering spectroscopy.
    Cottrell WJ; Wilson JD; Foster TH
    Opt Lett; 2007 Aug; 32(16):2348-50. PubMed ID: 17700781
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Deep-penetration fluorescence imaging through dense yeast cells suspensions using Airy beams.
    Nagar H; Roichman Y
    Opt Lett; 2019 Apr; 44(8):1896-1899. PubMed ID: 30985769
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Longitudinal-differential interferometry: direct imaging of axial superluminal phase propagation.
    Kim MS; Scharf T; Etrich C; Rockstuhl C; Peter HH
    Opt Lett; 2012 Feb; 37(3):305-7. PubMed ID: 22297334
    [TBL] [Abstract][Full Text] [Related]  

  • 51. High-resolution imaging in a deep turbid medium based on an ultrasound-switchable fluorescence technique.
    Yuan B; Uchiyama S; Liu Y; Nguyen KT; Alexandrakis G
    Appl Phys Lett; 2012 Jul; 101(3):33703. PubMed ID: 22893732
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Excitation-and-collection geometry insensitive fluorescence imaging of tissue-simulating turbid media.
    Qu JY; Huang Z; Hua J
    Appl Opt; 2000 Jul; 39(19):3344-56. PubMed ID: 18349903
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fluorescent imaging of single nanoparticles and viruses on a smart phone.
    Wei Q; Qi H; Luo W; Tseng D; Ki SJ; Wan Z; Göröcs Z; Bentolila LA; Wu TT; Sun R; Ozcan A
    ACS Nano; 2013 Oct; 7(10):9147-55. PubMed ID: 24016065
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Nonlinear optical microscopy improvement by focal-point axial modulation.
    Dashtabi MM; Massudi R
    J Biomed Opt; 2016 May; 21(5):56006. PubMed ID: 27228504
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Birefringence-induced phase delay enables Brillouin mechanical imaging in turbid media.
    Antonacci G; Vanna R; Ventura M; Schiavone ML; Sobacchi C; Behrouzitabar M; Polli D; Manzoni C; Cerullo G
    Nat Commun; 2024 Jun; 15(1):5202. PubMed ID: 38898004
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Using dynamic low-coherence interferometry to image Brownian motion within highly scattering media.
    Boas DA; Bizheva KK; Siegel AM
    Opt Lett; 1998 Mar; 23(5):319-21. PubMed ID: 18084498
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Enhanced Light Sheet Elastic Scattering Microscopy by Using a Supercontinuum Laser.
    Di Battista D; Merino D; Zacharakis G; Loza-Alvarez P; Olarte OE
    Methods Protoc; 2019 Jul; 2(3):. PubMed ID: 31284373
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Coherence of a light beam through an optically dense turbid layer.
    de Wolf DA
    Appl Opt; 1978 Apr; 17(8):1280-5. PubMed ID: 20197972
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Enhanced coupling of light into a turbid medium through microscopic interface engineering.
    Thompson JV; Hokr BH; Kim W; Ballmann CW; Applegate BE; Jo J; Yamilov A; Cao H; Scully MO; Yakovlev VV
    Proc Natl Acad Sci U S A; 2017 Jul; 114(30):7941-7946. PubMed ID: 28701381
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Holographic imaging through a scattering layer using speckle interferometry.
    Somkuwar AS; Das B; Vinu RV; Park Y; Singh RK
    J Opt Soc Am A Opt Image Sci Vis; 2017 Aug; 34(8):1392-1399. PubMed ID: 29036106
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.