These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 20411015)

  • 41. Tailoring optical transmission via the arrangement of compound subwavelength hole arrays.
    Liu JQ; He MD; Zhai X; Wang LL; Wen S; Chen L; Shao Z; Wan Q; Zou BS; Yao J
    Opt Express; 2009 Feb; 17(3):1859-64. PubMed ID: 19189016
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Transmissive structural color filters using vertically coupled aluminum nanohole/nanodisk array with a triangular-lattice.
    Dai P; Wang Y; Zhu X; Shi H; Chen Y; Zhang S; Yang W; Chen Z; Xiao S; Duan H
    Nanotechnology; 2018 Sep; 29(39):395202. PubMed ID: 29972380
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Field enhancement in metallic subwavelength aperture arrays probed by erbium upconversion luminescence.
    Verhagen E; Kuipers L; Polman A
    Opt Express; 2009 Aug; 17(17):14586-98. PubMed ID: 19687938
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Characteristics of second harmonic generation of Lamb waves in nonlinear elastic plates.
    Müller MF; Kim JY; Qu J; Jacobs LJ
    J Acoust Soc Am; 2010 Apr; 127(4):2141-52. PubMed ID: 20369995
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Sub-micron resolution surface plasmon resonance imaging enabled by nanohole arrays with surrounding Bragg mirrors for enhanced sensitivity and isolation.
    Lindquist NC; Lesuffleur A; Im H; Oh SH
    Lab Chip; 2009 Feb; 9(3):382-7. PubMed ID: 19156286
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Curve crossing and negative refraction in simulations of near-field coupled metallic nanoparticle arrays.
    Lopata K; Neuhauser D; Baer R
    J Chem Phys; 2007 Oct; 127(15):154714. PubMed ID: 17949198
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Extraordinary optical transmission based on subwavelength metallic grating with ellipse walls.
    Liang Y; Peng W; Hu R; Zou H
    Opt Express; 2013 Mar; 21(5):6139-52. PubMed ID: 23482182
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Basis and lattice polarization mechanisms for light transmission through nanohole arrays in a metal film.
    Gordon R; Hughes M; Leathem B; Kavanagh KL; Brolo AG
    Nano Lett; 2005 Jul; 5(7):1243-6. PubMed ID: 16178218
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Deep-subwavelength nanohole arrays embedded in nanoripples fabricated by femtosecond laser irradiation.
    Khuat V; Si J; Chen T; Hou X
    Opt Lett; 2015 Jan; 40(2):209-12. PubMed ID: 25679846
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Transmission resonances in a metal film with arrays of asymmetry cross-shaped apertures.
    Zhang P; Zhao M; Wu L; Zheng Y; Duan J; Yang Z
    J Opt Soc Am A Opt Image Sci Vis; 2013 Nov; 30(11):2356-60. PubMed ID: 24322936
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Nonlinear response of GaAs gratings in the extraordinary transmission regime.
    Vincenti MA; de Ceglia D; Scalora M
    Opt Lett; 2011 Dec; 36(23):4674-6. PubMed ID: 22139280
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Metallic nanofilm half-wave plate based on magnetic plasmon resonance.
    Zhu ZH; Guo CC; Liu K; Ye WM; Yuan XD; Yang B; Ma T
    Opt Lett; 2012 Feb; 37(4):698-700. PubMed ID: 22344152
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Wavevector-resolved monochromatic spectral imaging of extraordinary optical transmission through subwavelength aperture arrays.
    Branagan SP; Bohn PW
    Opt Express; 2009 Oct; 17(21):18995-9005. PubMed ID: 20372633
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Tuning the extraordinary optical transmission through subwavelength hole array by applying a magnetic field.
    Battula A; Chen S; Lu Y; Knize RJ; Reinhardt K
    Opt Lett; 2007 Sep; 32(18):2692-4. PubMed ID: 17873937
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Discrete plasmonic Talbot effect in subwavelength metal waveguide arrays.
    Wang Y; Zhou K; Zhang X; Yang K; Wang Y; Song Y; Liu S
    Opt Lett; 2010 Mar; 35(5):685-7. PubMed ID: 20195319
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Generation of pronounced Fano resonances and tuning of subwavelength spatial light distribution in plasmonic pentamers.
    Rahmani M; Lukiyanchuk B; Ng B; Tavakkoli K G A; Liew YF; Hong MH
    Opt Express; 2011 Mar; 19(6):4949-56. PubMed ID: 21445130
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Surface plasmon hurdles leading to a strongly localized giant field enhancement on two-dimensional (2D) metallic diffraction gratings.
    Brûlé Y; Demésy G; Gralak B; Popov E
    Opt Express; 2015 Apr; 23(7):9167-82. PubMed ID: 25968751
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Second-harmonic optical spectroscopy on split-ring-resonator arrays.
    Niesler FB; Feth N; Linden S; Wegener M
    Opt Lett; 2011 May; 36(9):1533-5. PubMed ID: 21540918
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Enhanced second-harmonic generation from individual metallic nanoapertures.
    Schön P; Bonod N; Devaux E; Wenger J; Rigneault H; Ebbesen TW; Brasselet S
    Opt Lett; 2010 Dec; 35(23):4063-5. PubMed ID: 21124613
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Extraordinary transmission through gain-assisted silicon-based nanohole arrays in telecommunication regimes.
    Bavil MA; Deng Q; Zhou Z
    Opt Lett; 2014 Aug; 39(15):4506-9. PubMed ID: 25078214
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.