These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 20411145)

  • 1. Electron Microprobe Analysis and Tissue Reaction around Titanium Alloy Spinal Implants.
    Kim HD; Kim KS; Ki SC; Choi YS
    Asian Spine J; 2007 Jun; 1(1):1-7. PubMed ID: 20411145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal debris from titanium spinal implants.
    Wang JC; Yu WD; Sandhu HS; Betts F; Bhuta S; Delamarter RB
    Spine (Phila Pa 1976); 1999 May; 24(9):899-903. PubMed ID: 10327512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spinal implant debris-induced osteolysis.
    Hallab NJ; Cunningham BW; Jacobs JJ
    Spine (Phila Pa 1976); 2003 Oct; 28(20):S125-38. PubMed ID: 14560184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of spinal instrumentation particulate wear debris. an in vivo rabbit model and applied clinical study of retrieved instrumentation cases.
    Cunningham BW; Orbegoso CM; Dmitriev AE; Hallab NJ; Sefter JC; Asdourian P; McAfee PC
    Spine J; 2003; 3(1):19-32. PubMed ID: 14589241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrastructural analysis of metallic debris and tissue reaction around spinal implants in patients with late operative site pain.
    Senaran H; Atilla P; Kaymaz F; Acaroglu E; Surat A
    Spine (Phila Pa 1976); 2004 Aug; 29(15):1618-23; discussion 1623. PubMed ID: 15284504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biocompatibility studies of titanium-based alloy pedicle screw and rod system: histological aspects.
    Yamaguchi K; Konishi H; Hara S; Motomura Y
    Spine J; 2001; 1(4):260-8. PubMed ID: 14588330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Epidural application of spinal instrumentation particulate wear debris: a comprehensive evaluation of neurotoxicity using an in vivo animal model.
    Cunningham BW; Hallab NJ; Hu N; McAfee PC
    J Neurosurg Spine; 2013 Sep; 19(3):336-50. PubMed ID: 23808583
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Basic scientific considerations in total disc arthroplasty.
    Cunningham BW
    Spine J; 2004; 4(6 Suppl):219S-230S. PubMed ID: 15541670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wear and corrosion of titanium alloy spinal implants in vivo.
    Ji H; Xie X; Jiang Z; Wu X
    Sci Rep; 2024 Jul; 14(1):16847. PubMed ID: 39039225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo corrosion of cobalt-chromium and titanium wear particles.
    Shahgaldi BF; Heatley FW; Dewar A; Corrin B
    J Bone Joint Surg Br; 1995 Nov; 77(6):962-6. PubMed ID: 7593115
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissemination of wear particles to the liver, spleen, and abdominal lymph nodes of patients with hip or knee replacement.
    Urban RM; Jacobs JJ; Tomlinson MJ; Gavrilovic J; Black J; Peoc'h M
    J Bone Joint Surg Am; 2000 Apr; 82(4):457-76. PubMed ID: 10761937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation and characterization of wear particles generated in patients who have had failure of a hip arthroplasty without cement.
    Maloney WJ; Smith RL; Schmalzried TP; Chiba J; Huene D; Rubash H
    J Bone Joint Surg Am; 1995 Sep; 77(9):1301-10. PubMed ID: 7673277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aseptic loosening of pedicle screw as a result of metal wear debris in a pediatric patient.
    Botolin S; Merritt C; Erickson M
    Spine (Phila Pa 1976); 2013 Jan; 38(1):E38-42. PubMed ID: 23089930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of titanium particulate on development and maintenance of a posterolateral spinal arthrodesis: an in vivo rabbit model.
    Cunningham BW; Orbegoso CM; Dmitriev AE; Hallab NJ; Sefter JC; McAfee PC
    Spine (Phila Pa 1976); 2002 Sep; 27(18):1971-81. PubMed ID: 12634556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of Titanium Serum Levels in Patients After Spine Instrumentation: Comparison Between Posterolateral and 360º Spinal Fusion Surgery.
    Fernández Bances I; Paz Aparicio J; Alvarez Vega MA
    Cureus; 2019 Aug; 11(8):e5451. PubMed ID: 31511816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cementless total joint arthroplasty prostheses with titanium-alloy articular surfaces. A human retrieval analysis.
    Nasser S; Campbell PA; Kilgus D; Kossovsky N; Amstutz HC
    Clin Orthop Relat Res; 1990 Dec; (261):171-85. PubMed ID: 2245543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo compatibility of Dynesys(®) spinal implants: a case series of five retrieved periprosthetic tissue samples and corresponding implants.
    Neukamp M; Roeder C; Veruva SY; MacDonald DW; Kurtz SM; Steinbeck MJ
    Eur Spine J; 2015 May; 24(5):1074-84. PubMed ID: 25480114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Macrophage polarization in aseptic bone resorption around dental implants induced by Ti particles in a murine model.
    Wang X; Li Y; Feng Y; Cheng H; Li D
    J Periodontal Res; 2019 Aug; 54(4):329-338. PubMed ID: 30635919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The spinal cord dura mater reaction to nitinol and titanium alloy particles: a 1-year study in rabbits.
    Rhalmi S; Charette S; Assad M; Coillard C; Rivard CH
    Eur Spine J; 2007 Jul; 16(7):1063-72. PubMed ID: 17334794
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal concentrations in the serum and hair of patients with titanium alloy spinal implants.
    Kasai Y; Iida R; Uchida A
    Spine (Phila Pa 1976); 2003 Jun; 28(12):1320-6. PubMed ID: 12811278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.