These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 20411309)
1. In vitro dissolution of calcium phosphate-mullite composite in simulated body fluid. Priya A; Nath S; Biswas K; Basu B J Mater Sci Mater Med; 2010 Jun; 21(6):1817-28. PubMed ID: 20411309 [TBL] [Abstract][Full Text] [Related]
2. Fretting wear behavior of calcium phosphate-mullite composites in dry and albumin-containing simulated body fluid conditions. Nath S; Ummethala R; Basu B J Mater Sci Mater Med; 2010 Apr; 21(4):1151-61. PubMed ID: 20054617 [TBL] [Abstract][Full Text] [Related]
3. Bioactive ceramic composites sintered from hydroxyapatite and silica at 1,200 degrees C: preparation, microstructures and in vitro bone-like layer growth. Li XW; Yasuda HY; Umakoshi Y J Mater Sci Mater Med; 2006 Jun; 17(6):573-81. PubMed ID: 16691357 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of apatite ceramics containing alpha-tricalcium phosphate by immersion in simulated body fluid. Hirakata LM; Kon M; Asaoka K Biomed Mater Eng; 2003; 13(3):247-59. PubMed ID: 12883174 [TBL] [Abstract][Full Text] [Related]
5. Surface modification of P(EMA-co-HEA)/SiO2 nanohybrids for faster hydroxyapatite deposition in simulated body fluid? Vallés Lluch A; Ferrer GG; Pradas MM Colloids Surf B Biointerfaces; 2009 May; 70(2):218-25. PubMed ID: 19185471 [TBL] [Abstract][Full Text] [Related]
6. In vitro structural changes in porous HA/beta-TCP scaffolds in simulated body fluid. Sánchez-Salcedo S; Balas F; Izquierdo-Barba I; Vallet-Regí M Acta Biomater; 2009 Sep; 5(7):2738-51. PubMed ID: 19394904 [TBL] [Abstract][Full Text] [Related]
7. Hydroxyapatite formation on porous ceramics of alpha-tricalcium phosphate in a simulated body fluid. Uchino T; Yamaguchi K; Suzuki I; Kamitakahara M; Otsuka M; Ohtsuki C J Mater Sci Mater Med; 2010 Jun; 21(6):1921-6. PubMed ID: 20224935 [TBL] [Abstract][Full Text] [Related]
8. Apatite formation on the surface of wollastonite/tricalcium phosphate composite immersed in simulated body fluid. Huang X; Jiang D; Tan S J Biomed Mater Res B Appl Biomater; 2004 Apr; 69(1):70-2. PubMed ID: 15015212 [TBL] [Abstract][Full Text] [Related]
9. Growth of calcium hydroxyapatite (Ca-HAp) on cholesterol and cholestanol crystals from a simulated body fluid: A possible insight into the pathological calcifications associated with atherosclerosis. Laird DF; Mucalo MR; Yokogawa Y J Colloid Interface Sci; 2006 Mar; 295(2):348-63. PubMed ID: 16229855 [TBL] [Abstract][Full Text] [Related]
10. Effect of dissolution/precipitation on the residual stress redistribution of plasma-sprayed hydroxyapatite coating on titanium substrate in simulated body fluid (SBF). Rakngarm Nimkerdphol A; Otsuka Y; Mutoh Y J Mech Behav Biomed Mater; 2014 Aug; 36():98-108. PubMed ID: 24821139 [TBL] [Abstract][Full Text] [Related]
11. Calcium Citrate Amount and Gelatine Source Impact on Hydroxyapatite Formation in Bone Regeneration Material in Simulated Body Fluid. Wang Y; Yokoi T; Shimabukuro M; Kawashita M Molecules; 2024 Aug; 29(16):. PubMed ID: 39203002 [TBL] [Abstract][Full Text] [Related]
12. Characterization of bioactive glass-reinforced HAP-polymer composites. Greish YE; Brown PW J Biomed Mater Res; 2000 Dec; 52(4):687-94. PubMed ID: 11033551 [TBL] [Abstract][Full Text] [Related]
13. Solubility of hydroxyapatite/mica composites. Nordström EG; Hara T; Herø H Biomed Mater Eng; 1996; 6(2):73-8. PubMed ID: 8761517 [TBL] [Abstract][Full Text] [Related]
14. Interaction of MOPS buffer with glass-ceramic scaffold: Effect of (PO Horkavcová D; Rohanová D; Stříbny A; Schuhladen K; Boccaccini AR; Bezdička P J Biomed Mater Res B Appl Biomater; 2020 Jul; 108(5):1888-1896. PubMed ID: 31840940 [TBL] [Abstract][Full Text] [Related]
15. Biological control of apatite growth in simulated body fluid and human blood serum. Juhasz JA; Best SM; Auffret AD; Bonfield W J Mater Sci Mater Med; 2008 Apr; 19(4):1823-9. PubMed ID: 18157508 [TBL] [Abstract][Full Text] [Related]
16. Dissolution characteristics of extrusion freeformed hydroxyapatite-tricalcium phosphate scaffolds. Yang HY; Thompson I; Yang SF; Chi XP; Evans JR; Cook RJ J Mater Sci Mater Med; 2008 Nov; 19(11):3345-53. PubMed ID: 18545944 [TBL] [Abstract][Full Text] [Related]
17. In vitro studies of plasma-sprayed hydroxyapatite/Ti-6Al-4V composite coatings in simulated body fluid (SBF). Gu YW; Khor KA; Cheang P Biomaterials; 2003 Apr; 24(9):1603-11. PubMed ID: 12559820 [TBL] [Abstract][Full Text] [Related]
18. Dynamic study of calcium phosphate formation on porous HA/TCP ceramics. Duan YR; Zhang ZR; Wang CY; Chen JY; Zhang XD J Mater Sci Mater Med; 2004 Nov; 15(11):1205-11. PubMed ID: 15880929 [TBL] [Abstract][Full Text] [Related]
19. Nucleation and growth of octacalcium phosphate on treated titanium by immersion in a simplified simulated body fluid. Gemelli E; Resende CX; de Almeida Soares GD J Mater Sci Mater Med; 2010 Jul; 21(7):2035-47. PubMed ID: 20390323 [TBL] [Abstract][Full Text] [Related]
20. In vitro and in vivo biocompatibility and corrosion behaviour of a bioabsorbable magnesium alloy coated with octacalcium phosphate and hydroxyapatite. Hiromoto S; Inoue M; Taguchi T; Yamane M; Ohtsu N Acta Biomater; 2015 Jan; 11():520-30. PubMed ID: 25257316 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]