BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 20411947)

  • 21. Toward understanding the mutagenicity of an environmental carcinogen: structural insights into nucleotide incorporation preferences.
    Perlow RA; Broyde S
    J Mol Biol; 2002 Sep; 322(2):291-309. PubMed ID: 12217692
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Kinetics, structure, and mechanism of 8-Oxo-7,8-dihydro-2'-deoxyguanosine bypass by human DNA polymerase η.
    Patra A; Nagy LD; Zhang Q; Su Y; Müller L; Guengerich FP; Egli M
    J Biol Chem; 2014 Jun; 289(24):16867-82. PubMed ID: 24759104
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stepwise translocation of Dpo4 polymerase during error-free bypass of an oxoG lesion.
    Rechkoblit O; Malinina L; Cheng Y; Kuryavyi V; Broyde S; Geacintov NE; Patel DJ
    PLoS Biol; 2006 Jan; 4(1):e11. PubMed ID: 16379496
    [TBL] [Abstract][Full Text] [Related]  

  • 24. RB69 DNA polymerase structure, kinetics, and fidelity.
    Xia S; Konigsberg WH
    Biochemistry; 2014 May; 53(17):2752-67. PubMed ID: 24720884
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Probing minor groove hydrogen bonding interactions between RB69 DNA polymerase and DNA.
    Xia S; Christian TD; Wang J; Konigsberg WH
    Biochemistry; 2012 May; 51(21):4343-53. PubMed ID: 22571765
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Yeast DNA polymerase zeta is an efficient extender of primer ends opposite from 7,8-dihydro-8-Oxoguanine and O6-methylguanine.
    Haracska L; Prakash S; Prakash L
    Mol Cell Biol; 2003 Feb; 23(4):1453-9. PubMed ID: 12556503
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Steady-state and pre-steady-state kinetic analysis of dNTP insertion opposite 8-oxo-7,8-dihydroguanine by Escherichia coli polymerases I exo- and II exo-.
    Lowe LG; Guengerich FP
    Biochemistry; 1996 Jul; 35(30):9840-9. PubMed ID: 8703958
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Insights into the mismatch discrimination mechanism of Y-family DNA polymerase Dpo4.
    Jung H; Lee S
    Biochem J; 2021 May; 478(9):1769-1781. PubMed ID: 33881499
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evading the proofreading machinery of a replicative DNA polymerase: induction of a mutation by an environmental carcinogen.
    Perlow RA; Broyde S
    J Mol Biol; 2001 Jun; 309(2):519-36. PubMed ID: 11371169
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structure of the 2-aminopurine-cytosine base pair formed in the polymerase active site of the RB69 Y567A-DNA polymerase.
    Reha-Krantz LJ; Hariharan C; Subuddhi U; Xia S; Zhao C; Beckman J; Christian T; Konigsberg W
    Biochemistry; 2011 Nov; 50(46):10136-49. PubMed ID: 22023103
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Variation in mutation rates caused by RB69pol fidelity mutants can be rationalized on the basis of their kinetic behavior and crystal structures.
    Xia S; Wang M; Lee HR; Sinha A; Blaha G; Christian T; Wang J; Konigsberg W
    J Mol Biol; 2011 Mar; 406(4):558-70. PubMed ID: 21216248
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of a replicative DNA polymerase mutant with reduced fidelity and increased translesion synthesis capacity.
    Zhong X; Pedersen LC; Kunkel TA
    Nucleic Acids Res; 2008 Jul; 36(12):3892-904. PubMed ID: 18503083
    [TBL] [Abstract][Full Text] [Related]  

  • 33. RB69 DNA polymerase mutants with expanded nascent base-pair-binding pockets are highly efficient but have reduced base selectivity.
    Zhang H; Beckman J; Wang J; Konigsberg W
    Biochemistry; 2009 Jul; 48(29):6940-50. PubMed ID: 19522539
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The L561A substitution in the nascent base-pair binding pocket of RB69 DNA polymerase reduces base discrimination.
    Zhang H; Rhee C; Bebenek A; Drake JW; Wang J; Konigsberg W
    Biochemistry; 2006 Feb; 45(7):2211-20. PubMed ID: 16475809
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of hoogsteen edge hydrogen bonding at template purines in nucleotide incorporation by human DNA polymerase iota.
    Johnson RE; Haracska L; Prakash L; Prakash S
    Mol Cell Biol; 2006 Sep; 26(17):6435-41. PubMed ID: 16914729
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fidelity of nucleotide insertion at 8-oxo-7,8-dihydroguanine by mammalian DNA polymerase delta. Steady-state and pre-steady-state kinetic analysis.
    Einolf HJ; Guengerich FP
    J Biol Chem; 2001 Feb; 276(6):3764-71. PubMed ID: 11110788
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural and functional elucidation of the mechanism promoting error-prone synthesis by human DNA polymerase kappa opposite the 7,8-dihydro-8-oxo-2'-deoxyguanosine adduct.
    Irimia A; Eoff RL; Guengerich FP; Egli M
    J Biol Chem; 2009 Aug; 284(33):22467-22480. PubMed ID: 19542228
    [TBL] [Abstract][Full Text] [Related]  

  • 38. DNA polymerase structure-based insight on the mutagenic properties of 8-oxoguanine.
    Beard WA; Batra VK; Wilson SH
    Mutat Res; 2010 Nov; 703(1):18-23. PubMed ID: 20696268
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Y-Family DNA polymerases may use two different dNTP shapes for insertion: a hypothesis and its implications.
    Chandani S; Loechler EL
    J Mol Graph Model; 2009 Apr; 27(7):759-69. PubMed ID: 19188081
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Misincorporation of dAMP opposite 2-hydroxyadenine, an oxidative form of adenine.
    Kamiya H; Ueda T; Ohgi T; Matsukage A; Kasai H
    Nucleic Acids Res; 1995 Mar; 23(5):761-6. PubMed ID: 7708490
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.