These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 20411969)

  • 21. Capillary driven low-cost V-groove microfluidic device with high sample transport efficiency.
    Tian J; Kannangara D; Li X; Shen W
    Lab Chip; 2010 Sep; 10(17):2258-64. PubMed ID: 20589291
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multifunctional microvalves control by optical illumination on nanoheaters and its application in centrifugal microfluidic devices.
    Park JM; Cho YK; Lee BS; Lee JG; Ko C
    Lab Chip; 2007 May; 7(5):557-64. PubMed ID: 17476373
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rapid and alternative fabrication method for microfluidic paper based analytical devices.
    Malekghasemi S; Kahveci E; Duman M
    Talanta; 2016 Oct; 159():401-411. PubMed ID: 27474324
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thread as a matrix for biomedical assays.
    Reches M; Mirica KA; Dasgupta R; Dickey MD; Butte MJ; Whitesides GM
    ACS Appl Mater Interfaces; 2010 Jun; 2(6):1722-8. PubMed ID: 20496913
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluation of a training program for device operators in the Australian Government's Point of Care Testing in General Practice Trial: issues and implications for rural and remote practices.
    Shephard MD; Mazzachi BC; Watkinson L; Shephard AK; Laurence C; Gialamas A; Bubner T
    Rural Remote Health; 2009; 9(3):1189. PubMed ID: 19689171
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Understanding wax printing: a simple micropatterning process for paper-based microfluidics.
    Carrilho E; Martinez AW; Whitesides GM
    Anal Chem; 2009 Aug; 81(16):7091-5. PubMed ID: 20337388
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Generation of dynamic temporal and spatial concentration gradients using microfluidic devices.
    Lin F; Saadi W; Rhee SW; Wang SJ; Mittal S; Jeon NL
    Lab Chip; 2004 Jun; 4(3):164-7. PubMed ID: 15159771
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reciprocating flow-based centrifugal microfluidics mixer.
    Noroozi Z; Kido H; Micic M; Pan H; Bartolome C; Princevac M; Zoval J; Madou M
    Rev Sci Instrum; 2009 Jul; 80(7):075102. PubMed ID: 19655976
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spectrally resolved flow imaging of fluids inside a microfluidic chip with ultrahigh time resolution.
    Harel E; Pines A
    J Magn Reson; 2008 Aug; 193(2):199-206. PubMed ID: 18538599
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reagent-loaded cartridges for valveless and automated fluid delivery in microfluidic devices.
    Linder V; Sia SK; Whitesides GM
    Anal Chem; 2005 Jan; 77(1):64-71. PubMed ID: 15623279
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inkjet-printed microfluidic multianalyte chemical sensing paper.
    Abe K; Suzuki K; Citterio D
    Anal Chem; 2008 Sep; 80(18):6928-34. PubMed ID: 18698798
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fabrication and characterization of paper-based microfluidics prepared in nitrocellulose membrane by wax printing.
    Lu Y; Shi W; Qin J; Lin B
    Anal Chem; 2010 Jan; 82(1):329-35. PubMed ID: 20000582
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microfluidic platforms for lab-on-a-chip applications.
    Haeberle S; Zengerle R
    Lab Chip; 2007 Sep; 7(9):1094-110. PubMed ID: 17713606
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Programming fluid transport in paper-based microfluidic devices using razor-crafted open channels.
    Giokas DL; Tsogas GZ; Vlessidis AG
    Anal Chem; 2014 Jul; 86(13):6202-7. PubMed ID: 24915155
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fluid control in microfluidic devices using a fluid conveyance extension and an absorbent microfluidic flow modulator.
    Yuen PK
    Lab Chip; 2013 May; 13(9):1737-42. PubMed ID: 23511447
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrochemical detection for paper-based microfluidics.
    Dungchai W; Chailapakul O; Henry CS
    Anal Chem; 2009 Jul; 81(14):5821-6. PubMed ID: 19485415
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Three-dimensional axisymmetric flow-focusing device using stereolithography.
    Morimoto Y; Tan WH; Takeuchi S
    Biomed Microdevices; 2009 Apr; 11(2):369-77. PubMed ID: 19009352
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rapid prototyping of paper-based microfluidics with wax for low-cost, portable bioassay.
    Lu Y; Shi W; Jiang L; Qin J; Lin B
    Electrophoresis; 2009 May; 30(9):1497-500. PubMed ID: 19340829
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Equipment-free quantitative measurement for microfluidic paper-based analytical devices fabricated using the principles of movable-type printing.
    Zhang Y; Zhou C; Nie J; Le S; Qin Q; Liu F; Li Y; Li J
    Anal Chem; 2014 Feb; 86(4):2005-12. PubMed ID: 24444190
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Novel, simple and low-cost alternative method for fabrication of paper-based microfluidics by wax dipping.
    Songjaroen T; Dungchai W; Chailapakul O; Laiwattanapaisal W
    Talanta; 2011 Oct; 85(5):2587-93. PubMed ID: 21962687
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.