BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 20412043)

  • 1. Smooth muscle cell pathophysiology and advanced glycation end products (AGEs).
    Yamagishi S; Matsui T
    Curr Drug Targets; 2010 Jul; 11(7):875-81. PubMed ID: 20412043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Receptor for advanced glycation end products (RAGE): a novel therapeutic target for diabetic vascular complication.
    Yamagishi S; Nakamura K; Matsui T; Noda Y; Imaizumi T
    Curr Pharm Des; 2008; 14(5):487-95. PubMed ID: 18289075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advanced glycation end products (AGEs) and their receptor (RAGE) system in diabetic retinopathy.
    Yamagishi S; Nakamura K; Matsui T
    Curr Drug Discov Technol; 2006 Mar; 3(1):83-8. PubMed ID: 16712466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics, role and therapeutic implications of endogenous soluble form of receptor for advanced glycation end products (sRAGE) in diabetes.
    Yamagishi S; Matsui T; Nakamura K
    Curr Drug Targets; 2007 Oct; 8(10):1138-43. PubMed ID: 17979674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Agents that block advanced glycation end product (AGE)-RAGE (receptor for AGEs)-oxidative stress system: a novel therapeutic strategy for diabetic vascular complications.
    Yamagishi S; Nakamura K; Matsui T; Ueda S; Fukami K; Okuda S
    Expert Opin Investig Drugs; 2008 Jul; 17(7):983-96. PubMed ID: 18549336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Involvement of the toxic AGEs (TAGE)-RAGE system in the pathogenesis of diabetic vascular complications: a novel therapeutic strategy.
    Takeuchi M; Takino J; Yamagishi S
    Curr Drug Targets; 2010 Nov; 11(11):1468-82. PubMed ID: 20583971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The receptor for advanced glycation end-products has a central role in mediating the effects of advanced glycation end-products on the development of vascular disease in diabetes mellitus.
    Hori O; Yan SD; Ogawa S; Kuwabara K; Matsumoto M; Stern D; Schmidt AM
    Nephrol Dial Transplant; 1996; 11 Suppl 5():13-6. PubMed ID: 9044300
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RAGE: a novel target for drug intervention in diabetic vascular disease.
    Hudson BI; Schmidt AM
    Pharm Res; 2004 Jul; 21(7):1079-86. PubMed ID: 15290845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advanced glycation end products (AGEs) and cardiovascular disease (CVD) in diabetes.
    Yamagishi S; Matsui T; Ueda S; Nakamura K; Imaizumi T
    Cardiovasc Hematol Agents Med Chem; 2007 Jul; 5(3):236-40. PubMed ID: 17630950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of advanced glycation end products (AGEs) and oxidative stress in diabetic retinopathy.
    Yamagishi S; Ueda S; Matsui T; Nakamura K; Okuda S
    Curr Pharm Des; 2008; 14(10):962-8. PubMed ID: 18473846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of Advanced Glycation Endproduct (AGE)-Receptor for Advanced Glycation Endproduct (RAGE) Axis in Cardiovascular Disease and Its Therapeutic Intervention.
    Yamagishi SI
    Circ J; 2019 Aug; 83(9):1822-1828. PubMed ID: 31366777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduction of advanced-glycation end products levels and inhibition of RAGE signaling decreases rat vascular calcification induced by diabetes.
    Brodeur MR; Bouvet C; Bouchard S; Moreau S; Leblond J; Deblois D; Moreau P
    PLoS One; 2014; 9(1):e85922. PubMed ID: 24465790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RAGE mediates accelerated diabetic vein graft atherosclerosis induced by combined mechanical stress and AGEs via synergistic ERK activation.
    Li Y; Liu S; Zhang Z; Xu Q; Xie F; Wang J; Ping S; Li C; Wang Z; Zhang M; Huang J; Chen D; Hu L; Li C
    PLoS One; 2012; 7(4):e35016. PubMed ID: 22496883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of receptors for advanced glycation end-products in occlusive vascular and renal disease.
    Bierhaus A; Ritz E; Nawroth PP
    Nephrol Dial Transplant; 1996; 11 Suppl 5():87-90. PubMed ID: 9044315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glycation and cardiovascular disease in diabetes: A perspective on the concept of metabolic memory.
    Yamagishi SI; Nakamura N; Matsui T
    J Diabetes; 2017 Feb; 9(2):141-148. PubMed ID: 27556881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advanced glycation end products (AGEs) and diabetic vascular complications.
    Yamagishi S; Nakamura K; Imaizumi T
    Curr Diabetes Rev; 2005 Feb; 1(1):93-106. PubMed ID: 18220586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Therapeutic Interventions for Advanced Glycation-End Products and its Receptor- Mediated Cardiovascular Disease.
    Prasad K; Tiwari S
    Curr Pharm Des; 2017; 23(6):937-943. PubMed ID: 27719648
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationship of Advanced Glycation End Products With Cardiovascular Disease in Menopausal Women.
    Pertynska-Marczewska M; Merhi Z
    Reprod Sci; 2015 Jul; 22(7):774-82. PubMed ID: 25228634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Receptor for advanced glycation endproducts (RAGE) and vascular inflammation: insights into the pathogenesis of macrovascular complications in diabetes.
    Wendt T; Bucciarelli L; Qu W; Lu Y; Yan SF; Stern DM; Schmidt AM
    Curr Atheroscler Rep; 2002 May; 4(3):228-37. PubMed ID: 11931721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advanced glycation end products (AGEs) on the surface of diabetic erythrocytes bind to the vessel wall via a specific receptor inducing oxidant stress in the vasculature: a link between surface-associated AGEs and diabetic complications.
    Wautier JL; Wautier MP; Schmidt AM; Anderson GM; Hori O; Zoukourian C; Capron L; Chappey O; Yan SD; Brett J
    Proc Natl Acad Sci U S A; 1994 Aug; 91(16):7742-6. PubMed ID: 8052654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.