BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 20412060)

  • 1. Highly site-selective stability increases by glycosylation of dihydrofolate reductase.
    Tey LH; Loveridge EJ; Swanwick RS; Flitsch SL; Allemann RK
    FEBS J; 2010 May; 277(9):2171-9. PubMed ID: 20412060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased thermal stability of site-selectively glycosylated dihydrofolate reductase.
    Swanwick RS; Daines AM; Tey LH; Flitsch SL; Allemann RK
    Chembiochem; 2005 Aug; 6(8):1338-40. PubMed ID: 16003807
    [No Abstract]   [Full Text] [Related]  

  • 3. Comparative stability of dihydrofolate reductase mutants in vitro and in vivo.
    Leontiev VV; Uversky VN; Gudkov AT
    Protein Eng; 1993 Jan; 6(1):81-4. PubMed ID: 8433973
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of mutation at methionine-42 of Escherichia coli dihydrofolate reductase on stability and function: implication of hydrophobic interactions.
    Ohmae E; Fukumizu Y; Iwakura M; Gekko K
    J Biochem; 2005 May; 137(5):643-52. PubMed ID: 15944418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multistate equilibrium unfolding of Escherichia coli dihydrofolate reductase: thermodynamic and spectroscopic description of the native, intermediate, and unfolded ensembles.
    Ionescu RM; Smith VF; O'Neill JC; Matthews CR
    Biochemistry; 2000 Aug; 39(31):9540-50. PubMed ID: 10924151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of regions in the dihydrofolate reductase structure that interact with the molecular chaperonin GroEL.
    Clark AC; Hugo E; Frieden C
    Biochemistry; 1996 May; 35(18):5893-901. PubMed ID: 8639551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of point mutations in a hinge region on the stability, folding, and enzymatic activity of Escherichia coli dihydrofolate reductase.
    Ahrweiler PM; Frieden C
    Biochemistry; 1991 Aug; 30(31):7801-9. PubMed ID: 1868058
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of a stable intermediate in the thermal unfolding of a cysteine-free form of dihydrofolate reductase from Escherichia coli.
    Luo J; Iwakura M; Matthews CR
    Biochemistry; 1995 Aug; 34(33):10669-75. PubMed ID: 7654721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of point mutations at the flexible loop glycine-67 of Escherichia coli dihydrofolate reductase on its stability and function.
    Ohmae E; Iriyama K; Ichihara S; Gekko K
    J Biochem; 1996 Apr; 119(4):703-10. PubMed ID: 8743572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of point mutations at the flexible loop alanine-145 of Escherichia coli dihydrofolate reductase on its stability and function.
    Ohmae E; Ishimura K; Iwakura M; Gekko K
    J Biochem; 1998 May; 123(5):839-46. PubMed ID: 9562614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of dimerization on dihydrofolate reductase catalysis.
    Guo J; Loveridge EJ; Luk LY; Allemann RK
    Biochemistry; 2013 Jun; 52(22):3881-7. PubMed ID: 23672258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acid and thermal unfolding of Escherichia coli dihydrofolate reductase.
    Ohmae E; Kurumiya T; Makino S; Gekko K
    J Biochem; 1996 Nov; 120(5):946-53. PubMed ID: 8982861
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of five-tryptophan mutations on structure, stability and function of Escherichia coli dihydrofolate reductase.
    Ohmae E; Sasaki Y; Gekko K
    J Biochem; 2001 Sep; 130(3):439-47. PubMed ID: 11530021
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolution of Optimized Hydride Transfer Reaction and Overall Enzyme Turnover in Human Dihydrofolate Reductase.
    Li J; Lin J; Kohen A; Singh P; Francis K; Cheatum CM
    Biochemistry; 2021 Dec; 60(50):3822-3828. PubMed ID: 34875176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of the occluded conformation in bacterial dihydrofolate reductases.
    Behiry EM; Luk LY; Matthews SM; Loveridge EJ; Allemann RK
    Biochemistry; 2014 Jul; 53(29):4761-8. PubMed ID: 25014833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pressure dependence of activity and stability of dihydrofolate reductases of the deep-sea bacterium Moritella profunda and Escherichia coli.
    Ohmae E; Murakami C; Tate S; Gekko K; Hata K; Akasaka K; Kato C
    Biochim Biophys Acta; 2012 Mar; 1824(3):511-9. PubMed ID: 22266402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Circularly permuted dihydrofolate reductase of E. coli has functional activity and a destabilized tertiary structure.
    Protasova NYu ; Kireeva ML; Murzina NV; Murzin AG; Uversky VN; Gryaznova OI; Gudkov AT
    Protein Eng; 1994 Nov; 7(11):1373-7. PubMed ID: 7700869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of salts on the activity and stability of Escherichia coli and Haloferax volcanii dihydrofolate reductases.
    Wright DB; Banks DD; Lohman JR; Hilsenbeck JL; Gloss LM
    J Mol Biol; 2002 Oct; 323(2):327-44. PubMed ID: 12381324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Systematic circular permutation of an entire protein reveals essential folding elements.
    Iwakura M; Nakamura T; Yamane C; Maki K
    Nat Struct Biol; 2000 Jul; 7(7):580-5. PubMed ID: 10876245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Artificial duplication of the R67 dihydrofolate reductase gene to create protein asymmetry. Effects on protein activity and folding.
    Zhuang P; Yin M; Holland JC; Peterson CB; Howell EE
    J Biol Chem; 1993 Oct; 268(30):22672-9. PubMed ID: 8226776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.