These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
333 related articles for article (PubMed ID: 20412307)
1. Carbon catabolite repression in Pseudomonas : optimizing metabolic versatility and interactions with the environment. Rojo F FEMS Microbiol Rev; 2010 Sep; 34(5):658-84. PubMed ID: 20412307 [TBL] [Abstract][Full Text] [Related]
2. Rewiring the functional complexity between Crc, Hfq and sRNAs to regulate carbon catabolite repression in Pseudomonas. Bharwad K; Rajkumar S World J Microbiol Biotechnol; 2019 Aug; 35(9):140. PubMed ID: 31451938 [TBL] [Abstract][Full Text] [Related]
3. Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Görke B; Stülke J Nat Rev Microbiol; 2008 Aug; 6(8):613-24. PubMed ID: 18628769 [TBL] [Abstract][Full Text] [Related]
4. The mechanisms of carbon catabolite repression in bacteria. Deutscher J Curr Opin Microbiol; 2008 Apr; 11(2):87-93. PubMed ID: 18359269 [TBL] [Abstract][Full Text] [Related]
5. What are the signals that control catabolite repression in Pseudomonas? Moreno R; Rojo F Microb Biotechnol; 2024 Jan; 17(1):e14407. PubMed ID: 38227132 [TBL] [Abstract][Full Text] [Related]
7. Catabolite repression of the citST two-component system in Bacillus subtilis. Repizo GD; Blancato VS; Sender PD; Lolkema J; Magni C FEMS Microbiol Lett; 2006 Jul; 260(2):224-31. PubMed ID: 16842348 [TBL] [Abstract][Full Text] [Related]
8. Understanding carbon catabolite repression in Escherichia coli using quantitative models. Kremling A; Geiselmann J; Ropers D; de Jong H Trends Microbiol; 2015 Feb; 23(2):99-109. PubMed ID: 25475882 [TBL] [Abstract][Full Text] [Related]
9. Transcriptomic analysis of a classical model of carbon catabolite regulation in Streptomyces coelicolor. Romero-Rodríguez A; Rocha D; Ruiz-Villafan B; Tierrafría V; Rodríguez-Sanoja R; Segura-González D; Sánchez S BMC Microbiol; 2016 Apr; 16():77. PubMed ID: 27121083 [TBL] [Abstract][Full Text] [Related]
10. The mechanism of sugar-mediated catabolite repression of the propionate catabolic genes in Escherichia coli. Park JM; Vinuselvi P; Lee SK Gene; 2012 Aug; 504(1):116-21. PubMed ID: 22579471 [TBL] [Abstract][Full Text] [Related]
11. Use of a new catabolite repression resistant promoter isolated from Bacillus subtilis KCC103 for hyper-production of recombinant enzymes. Nagarajan DR; Krishnan C Protein Expr Purif; 2010 Mar; 70(1):122-8. PubMed ID: 19815075 [TBL] [Abstract][Full Text] [Related]
13. [PO-independent termination of transcription of catabolite operons in Escherichia coli and Bacillus subtilis]. Gershanovich VN Mol Gen Mikrobiol Virusol; 1999; (3):3-7. PubMed ID: 10495975 [TBL] [Abstract][Full Text] [Related]
14. Computational prediction of the Crc regulon identifies genus-wide and species-specific targets of catabolite repression control in Pseudomonas bacteria. Browne P; Barret M; O'Gara F; Morrissey JP BMC Microbiol; 2010 Nov; 10():300. PubMed ID: 21108798 [TBL] [Abstract][Full Text] [Related]
15. Sugar uptake and carbon catabolite repression in Bacillus megaterium strains with inactivated ptsHI. Wagner A; Küster-Schöck E; Hillen W J Mol Microbiol Biotechnol; 2000 Oct; 2(4):587-92. PubMed ID: 11075936 [TBL] [Abstract][Full Text] [Related]
16. Rewiring carbon catabolite repression for microbial cell factory. Vinuselvi P; Kim MK; Lee SK; Ghim CM BMB Rep; 2012 Feb; 45(2):59-70. PubMed ID: 22360882 [TBL] [Abstract][Full Text] [Related]
17. The Crc/CrcZ-CrcY global regulatory system helps the integration of gluconeogenic and glycolytic metabolism in Pseudomonas putida. La Rosa R; Nogales J; Rojo F Environ Microbiol; 2015 Sep; 17(9):3362-78. PubMed ID: 25711694 [TBL] [Abstract][Full Text] [Related]
18. Carbon catabolite regulation in Streptomyces: new insights and lessons learned. Romero-Rodríguez A; Rocha D; Ruiz-Villafán B; Guzmán-Trampe S; Maldonado-Carmona N; Vázquez-Hernández M; Zelarayán A; Rodríguez-Sanoja R; Sánchez S World J Microbiol Biotechnol; 2017 Sep; 33(9):162. PubMed ID: 28770367 [TBL] [Abstract][Full Text] [Related]
19. Keeping signals straight in transcription regulation: specificity determinants for the interaction of a family of conserved bacterial RNA-protein couples. Schilling O; Herzberg C; Hertrich T; Vörsmann H; Jessen D; Hübner S; Titgemeyer F; Stülke J Nucleic Acids Res; 2006; 34(21):6102-15. PubMed ID: 17074746 [TBL] [Abstract][Full Text] [Related]
20. CcpN (YqzB), a novel regulator for CcpA-independent catabolite repression of Bacillus subtilis gluconeogenic genes. Servant P; Le Coq D; Aymerich S Mol Microbiol; 2005 Mar; 55(5):1435-51. PubMed ID: 15720552 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]