BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 20412315)

  • 1. Antioxidative mechanisms protect resistant strains of Staphylococcus aureus against ciprofloxacin oxidative damage.
    Páez PL; Becerra MC; Albesa I
    Fundam Clin Pharmacol; 2010 Dec; 24(6):771-6. PubMed ID: 20412315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light effect and reactive oxygen species in the action of ciprofloxacin on Staphylococcus aureus.
    Becerra MC; Sarmiento M; Páez PL; Argüello G; Albesa I
    J Photochem Photobiol B; 2004 Oct; 76(1-3):13-8. PubMed ID: 15488711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of the association of reduced glutathione and ciprofloxacin on the antimicrobial activity in Staphylococcus aureus.
    Páez PL; Becerra MC; Albesa I
    FEMS Microbiol Lett; 2010 Feb; 303(1):101-5. PubMed ID: 20030722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidative stress involved in the antibacterial action of different antibiotics.
    Albesa I; Becerra MC; Battán PC; Páez PL
    Biochem Biophys Res Commun; 2004 Apr; 317(2):605-9. PubMed ID: 15063800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidative stress induced by ciprofloxacin in Staphylococcus aureus.
    Becerra MC; Albesa I
    Biochem Biophys Res Commun; 2002 Oct; 297(4):1003-7. PubMed ID: 12359254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resistance to ciprofloxacin by enhancement of antioxidant defenses in biofilm and planktonic Proteus mirabilis.
    Aiassa V; Barnes AI; Albesa I
    Biochem Biophys Res Commun; 2010 Feb; 393(1):84-8. PubMed ID: 20097163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of macromolecular oxidation by reactive oxygen species in three bacterial genera exposed to different antibiotics.
    Páez PL; Becerra MC; Albesa I
    Cell Biochem Biophys; 2011 Dec; 61(3):467-72. PubMed ID: 21739263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sublethal ciprofloxacin treatment leads to resistance via antioxidant systems in Proteus mirabilis.
    Aiassa V; Barnes AI; Smania AM; Albesa I
    FEMS Microbiol Lett; 2012 Feb; 327(1):25-32. PubMed ID: 22092852
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipids and DNA oxidation in Staphylococcus aureus as a consequence of oxidative stress generated by ciprofloxacin.
    Becerra MC; Páez PL; Laróvere LE; Albesa I
    Mol Cell Biochem; 2006 Apr; 285(1-2):29-34. PubMed ID: 16541200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Investigation of the effect of efflux pump inhibitors to MIC values of ciprofloxacin in clinical isolates of Pseudomonas aeruginosa, Escherichia coli, Acinetobacter baumannii and Staphylococcus aureus].
    Cetinkaya E; Coban AY; Durupinar B
    Mikrobiyol Bul; 2008 Oct; 42(4):553-61. PubMed ID: 19149076
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dichotomous selection of high-level oxacillin resistance in Staphylococcus aureus by fluoroquinolones.
    Dalhoff A; Schubert S
    Int J Antimicrob Agents; 2010 Sep; 36(3):216-21. PubMed ID: 20630710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Susceptibility of methicillin-sensitive and methicillin-resistant staphylococci to ciprofloxacin].
    Namysł E; Piechowicz L; Krzywińska E; Galiński J
    Med Dosw Mikrobiol; 1993; 45(2):149-52. PubMed ID: 8309287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Macromolecular oxidation in planktonic population and biofilms of Proteus mirabilis exposed to ciprofloxacin.
    Aiassa V; Barnes AI; Albesa I
    Cell Biochem Biophys; 2014 Jan; 68(1):49-54. PubMed ID: 23771722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The rate of inducible clindamycin resistance and susceptibilities to other antimicrobial agents in staphylococci].
    Oğuz VA; Yapar N; Sezak N; Cavuş SA; Kurutepe S; Peksel H; Cakir N; Yüce A
    Mikrobiyol Bul; 2009 Jan; 43(1):37-44. PubMed ID: 19334378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increased advanced oxidation of protein products and enhanced total antioxidant capacity in plasma by action of toxins of Escherichia coli STEC.
    Aiassa V; Baronetti JL; Paez PL; Barnes AI; Albrecht C; Pellarin G; Eraso AJ; Albesa I
    Toxicol In Vitro; 2011 Feb; 25(1):426-31. PubMed ID: 21092753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reactive oxidant species and oxidation of protein and haemoglobin as biomarkers of susceptibility to stress caused by chloramphenicol.
    Correa-Salde V; Albesa I
    Biomed Pharmacother; 2009 Feb; 63(2):100-4. PubMed ID: 18602793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bactericidal activity and target preference of a piperazinyl-cross-linked ciprofloxacin dimer with Staphylococcus aureus and Escherichia coli.
    Zhao X; Quinn B; Kerns R; Drlica K
    J Antimicrob Chemother; 2006 Dec; 58(6):1283-6. PubMed ID: 17003060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [A study on the active efflux mechanism in Staphylococcus aureus resistant to quinolone].
    Xu F; Duan DQ; Lin YG
    Zhonghua Jie He He Hu Xi Za Zhi; 2004 Jun; 27(6):403-6. PubMed ID: 15256091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of oxidative stress induced by ciprofloxacin and pyoverdin in bacteria and in leukocytes to evaluate toxicity.
    Becerra MC; Eraso AJ; Albesa I
    Luminescence; 2003; 18(6):334-40. PubMed ID: 14694423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Piperine, a phytochemical potentiator of ciprofloxacin against Staphylococcus aureus.
    Khan IA; Mirza ZM; Kumar A; Verma V; Qazi GN
    Antimicrob Agents Chemother; 2006 Feb; 50(2):810-2. PubMed ID: 16436753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.