BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 20412386)

  • 1. Analysis of peptides in prohormone convertase 1/3 null mouse brain using quantitative peptidomics.
    Wardman JH; Zhang X; Gagnon S; Castro LM; Zhu X; Steiner DF; Day R; Fricker LD
    J Neurochem; 2010 Jul; 114(1):215-25. PubMed ID: 20412386
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of prohormone convertase-2 in hypothalamic neuropeptide processing: a quantitative neuropeptidomic study.
    Pan H; Che FY; Peng B; Steiner DF; Pintar JE; Fricker LD
    J Neurochem; 2006 Sep; 98(6):1763-77. PubMed ID: 16903874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tissue distribution and processing of proSAAS by proprotein convertases.
    Sayah M; Fortenberry Y; Cameron A; Lindberg I
    J Neurochem; 2001 Mar; 76(6):1833-41. PubMed ID: 11259501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuropeptide processing profile in mice lacking prohormone convertase-1.
    Pan H; Nanno D; Che FY; Zhu X; Salton SR; Steiner DF; Fricker LD; Devi LA
    Biochemistry; 2005 Mar; 44(12):4939-48. PubMed ID: 15779921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of prohormone convertase 1/3 properties using site-directed mutagenesis.
    Ozawa A; Peinado JR; Lindberg I
    Endocrinology; 2010 Sep; 151(9):4437-45. PubMed ID: 20610561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biological processing of the cocaine and amphetamine-regulated transcript precursors by prohormone convertases, PC2 and PC1/3.
    Dey A; Xhu X; Carroll R; Turck CW; Stein J; Steiner DF
    J Biol Chem; 2003 Apr; 278(17):15007-14. PubMed ID: 12584191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuropeptidomic analysis establishes a major role for prohormone convertase-2 in neuropeptide biosynthesis.
    Zhang X; Pan H; Peng B; Steiner DF; Pintar JE; Fricker LD
    J Neurochem; 2010 Mar; 112(5):1168-79. PubMed ID: 19968759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biosynthesis of proTRH-derived peptides in prohormone convertase 1 and 2 knockout mice.
    Cyr NE; Stuart RC; Zhu X; Steiner DF; Nillni EA
    Peptides; 2012 May; 35(1):42-8. PubMed ID: 22421509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional characterization of ProSAAS: similarities and differences with 7B2.
    Fortenberry Y; Hwang JR; Apletalina EV; Lindberg I
    J Biol Chem; 2002 Feb; 277(7):5175-86. PubMed ID: 11719503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The SAAS granin exhibits structural and functional homology to 7B2 and contains a highly potent hexapeptide inhibitor of PC1.
    Cameron A; Fortenberry Y; Lindberg I
    FEBS Lett; 2000 May; 473(2):135-8. PubMed ID: 10812060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distribution and colocalization of cholecystokinin with the prohormone convertase enzymes PC1, PC2, and PC5 in rat brain.
    Cain BM; Connolly K; Blum A; Vishnuvardhan D; Marchand JE; Beinfeld MC
    J Comp Neurol; 2003 Dec; 467(3):307-25. PubMed ID: 14608596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromogranin A processing and secretion: specific role of endogenous and exogenous prohormone convertases in the regulated secretory pathway.
    Eskeland NL; Zhou A; Dinh TQ; Wu H; Parmer RJ; Mains RE; O'Connor DT
    J Clin Invest; 1996 Jul; 98(1):148-56. PubMed ID: 8690787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cleavage of recombinant proenkephalin and blockade mutants by prohormone convertases 1 and 2: an in vitro specificity study.
    Peinado JR; Li H; Johanning K; Lindberg I
    J Neurochem; 2003 Nov; 87(4):868-78. PubMed ID: 14622118
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of prohormone convertases in pro-neuropeptide Y processing: coexpression and in vitro kinetic investigations.
    Brakch N; Rist B; Beck-Sickinger AG; Goenaga J; Wittek R; Bürger E; Brunner HR; Grouzmann E
    Biochemistry; 1997 Dec; 36(51):16309-20. PubMed ID: 9405066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of hypothalamic prohormone convertases 1 and 2 and effects on processing of prothyrotropin-releasing hormone.
    Sanchez VC; Goldstein J; Stuart RC; Hovanesian V; Huo L; Munzberg H; Friedman TC; Bjorbaek C; Nillni EA
    J Clin Invest; 2004 Aug; 114(3):357-69. PubMed ID: 15286802
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tachykinins Processing is Significantly Impaired in PC1 and PC2 Mutant Mouse Spinal Cord S9 Fractions.
    Saidi M; Kamali S; Ruiz AO; Beaudry F
    Neurochem Res; 2015 Nov; 40(11):2304-16. PubMed ID: 26373413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation and characterization of VGF peptides in rat brain. Role of PC1/3 and PC2 in the maturation of VGF precursor.
    Trani E; Giorgi A; Canu N; Amadoro G; Rinaldi AM; Halban PA; Ferri GL; Possenti R; Schininà ME; Levi A
    J Neurochem; 2002 May; 81(3):565-74. PubMed ID: 12065665
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Defective prodynorphin processing in mice lacking prohormone convertase PC2.
    Berman Y; Mzhavia N; Polonskaia A; Furuta M; Steiner DF; Pintar JE; Devi LA
    J Neurochem; 2000 Oct; 75(4):1763-70. PubMed ID: 10987860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Altered processing of the neurotensin/neuromedin N precursor in PC2 knock down mice: a biochemical and immunohistochemical study.
    Villeneuve P; Feliciangeli S; Croissandeau G; Seidah NG; Mbikay M; Kitabgi P; Beaudet A
    J Neurochem; 2002 Aug; 82(4):783-93. PubMed ID: 12358783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lipopolysaccharide mediated regulation of neuroendocrine associated proprotein convertases and neuropeptide precursor processing in the rat spleen.
    Lansac G; Dong W; Dubois CM; Benlarbi N; Afonso C; Fournier I; Salzet M; Day R
    J Neuroimmunol; 2006 Feb; 171(1-2):57-71. PubMed ID: 16337011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.