These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 20412626)
1. Diffuse reflection spectroscopy: an alternative to autofluorescence spectroscopy in tongue cancer detection. Mallia RJ; Narayanan S; Madhavan J; Sebastian P; Kumar R; Mathews A; Thomas G; Radhakrishnan J Appl Spectrosc; 2010 Apr; 64(4):409-18. PubMed ID: 20412626 [TBL] [Abstract][Full Text] [Related]
2. Laser-induced autofluorescence spectral ratio reference standard for early discrimination of oral cancer. Mallia RJ; Thomas SS; Mathews A; Kumar R; Sebastian P; Madhavan J; Subhash N Cancer; 2008 Apr; 112(7):1503-12. PubMed ID: 18260154 [TBL] [Abstract][Full Text] [Related]
3. Clinical grading of oral mucosa by curve-fitting of corrected autofluorescence using diffuse reflectance spectra. Mallia RJ; Subhash N; Mathews A; Kumar R; Thomas SS; Sebastian P; Madhavan J Head Neck; 2010 Jun; 32(6):763-79. PubMed ID: 19827122 [TBL] [Abstract][Full Text] [Related]
4. [Superficial bladder cancer detection using diffuse reflectance spectral ratio R540/R575 of oxygenated hemoglobin bands]. Wei HJ; Xing D; Wu GY; Lu JJ; Wu RH; Gu HM; He BH; Chen XM Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Nov; 28(11):2721-5. PubMed ID: 19271527 [TBL] [Abstract][Full Text] [Related]
6. 18F-FDG PET and CT/MRI in oral cavity squamous cell carcinoma: a prospective study of 124 patients with histologic correlation. Ng SH; Yen TC; Liao CT; Chang JT; Chan SC; Ko SF; Wang HM; Wong HF J Nucl Med; 2005 Jul; 46(7):1136-43. PubMed ID: 16000282 [TBL] [Abstract][Full Text] [Related]
7. Autofluorescence and diffuse reflectance spectroscopy for oral oncology. de Veld DC; Skurichina M; Witjes MJ; Duin RP; Sterenborg HJ; Roodenburg JL Lasers Surg Med; 2005 Jun; 36(5):356-64. PubMed ID: 15856507 [TBL] [Abstract][Full Text] [Related]
8. Detection of the molecular changes associated with oral cancer using a molecular-specific fluorescent contrast agent and single-wavelength spectroscopy. Hsu ER; Gillenwater AM; Richards-Kortum RR Appl Spectrosc; 2005 Sep; 59(9):1166-73. PubMed ID: 16197641 [TBL] [Abstract][Full Text] [Related]
9. Laser-induced fluorescence spectroscopy for in vivo diagnosis of non-melanoma skin cancers. Panjehpour M; Julius CE; Phan MN; Vo-Dinh T; Overholt S Lasers Surg Med; 2002; 31(5):367-73. PubMed ID: 12430156 [TBL] [Abstract][Full Text] [Related]
10. Detection of squamous cell carcinomas and pre-cancerous lesions in the oral cavity by quantification of 5-aminolevulinic acid induced fluorescence endoscopic images. Zheng W; Soo KC; Sivanandan R; Olivo M Lasers Surg Med; 2002; 31(3):151-7. PubMed ID: 12224087 [TBL] [Abstract][Full Text] [Related]
11. Comparative evaluation of the diagnostic performance of autofluorescence and diffuse reflectance in oral cancer detection: a clinical study. Jayanthi JL; Subhash N; Stephen M; Philip EK; Beena VT J Biophotonics; 2011 Oct; 4(10):696-706. PubMed ID: 21905236 [TBL] [Abstract][Full Text] [Related]
12. Oxygenated hemoglobin diffuse reflectance ratio for in vivo detection of oral pre-cancer. Mallia R; Thomas SS; Mathews A; Kumar R; Sebastian P; Madhavan J; Subhash N J Biomed Opt; 2008; 13(4):041306. PubMed ID: 19021314 [TBL] [Abstract][Full Text] [Related]
13. Chromatic analysis of autofluorescence emitted from squamous cell carcinomas arising in the oral cavity: a preliminary study. Onizawa K; Yoshida H; Saginoya H Int J Oral Maxillofac Surg; 2000 Feb; 29(1):42-6. PubMed ID: 10691143 [TBL] [Abstract][Full Text] [Related]
14. Raman spectroscopy in combination with background near-infrared autofluorescence enhances the in vivo assessment of malignant tissues. Huang Z; Lui H; McLean DI; Korbelik M; Zeng H Photochem Photobiol; 2005; 81(5):1219-26. PubMed ID: 15869327 [TBL] [Abstract][Full Text] [Related]
15. Spectroscopic detection and evaluation of morphologic and biochemical changes in early human oral carcinoma. Müller MG; Valdez TA; Georgakoudi I; Backman V; Fuentes C; Kabani S; Laver N; Wang Z; Boone CW; Dasari RR; Shapshay SM; Feld MS Cancer; 2003 Apr; 97(7):1681-92. PubMed ID: 12655525 [TBL] [Abstract][Full Text] [Related]
16. Vision enhancement system for detection of oral cavity neoplasia based on autofluorescence. Svistun E; Alizadeh-Naderi R; El-Naggar A; Jacob R; Gillenwater A; Richards-Kortum R Head Neck; 2004 Mar; 26(3):205-15. PubMed ID: 14999795 [TBL] [Abstract][Full Text] [Related]
17. In vivo temporal evolution of ALA-induced normalized fluorescence at different anatomical locations of oral cavity: application to improve cancer diagnostic contrast and potential. Mallia RJ; Subhash N; Sebastian P; Kumar R; Thomas SS; Mathews A; Madhavan J Photodiagnosis Photodyn Ther; 2010 Sep; 7(3):162-75. PubMed ID: 20728840 [TBL] [Abstract][Full Text] [Related]
18. Optical spectroscopy characteristics can differentiate benign and malignant renal tissues: a potentially useful modality. Parekh DJ; Lin WC; Herrell SD J Urol; 2005 Nov; 174(5):1754-8. PubMed ID: 16217277 [TBL] [Abstract][Full Text] [Related]
19. Discrimination of normal, inflammatory, premalignant, and malignant oral tissue: a Raman spectroscopy study. Malini R; Venkatakrishna K; Kurien J; Pai KM; Rao L; Kartha VB; Krishna CM Biopolymers; 2006 Feb; 81(3):179-93. PubMed ID: 16231284 [TBL] [Abstract][Full Text] [Related]
20. Activation of MMP-2 and MMP-9 in patients with oral squamous cell carcinoma. Patel BP; Shah PM; Rawal UM; Desai AA; Shah SV; Rawal RM; Patel PS J Surg Oncol; 2005 May; 90(2):81-8. PubMed ID: 15844188 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]