BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 20412722)

  • 1. Gait impairment in neurological disorders: a new technological approach.
    Semprini R; Sale P; Foti C; Fini M; Franceschini M
    Funct Neurol; 2009; 24(4):179-83. PubMed ID: 20412722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of robot-assisted gait training using integrated biofeedback in neurologic disorders.
    Stoller O; Waser M; Stammler L; Schuster C
    Gait Posture; 2012 Apr; 35(4):595-600. PubMed ID: 22209566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cortical and spinal excitability changes after robotic gait training in healthy participants.
    Blicher JU; Nielsen JF
    Neurorehabil Neural Repair; 2009 Feb; 23(2):143-9. PubMed ID: 19047360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An accelerometry-based comparison of 2 robotic assistive devices for treadmill training of gait.
    Regnaux JP; Saremi K; Marehbian J; Bussel B; Dobkin BH
    Neurorehabil Neural Repair; 2008; 22(4):348-54. PubMed ID: 18073325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving gait in multiple sclerosis using robot-assisted, body weight supported treadmill training.
    Lo AC; Triche EW
    Neurorehabil Neural Repair; 2008; 22(6):661-71. PubMed ID: 18971381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robotic orthoses for body weight-supported treadmill training.
    Winchester P; Querry R
    Phys Med Rehabil Clin N Am; 2006 Feb; 17(1):159-72. PubMed ID: 16517349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel method for automatic treadmill speed adaptation.
    von Zitzewitz J; Bernhardt M; Riener R
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):401-9. PubMed ID: 17894272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive locomotor training on an end-effector gait robot: evaluation of the ground reaction forces in different training conditions.
    Tomelleri C; Waldner A; Werner C; Hesse S
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975492. PubMed ID: 22275689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [The influence of locomotor treatment using robotic body-weight-supported treadmill training on rehabilitation outcome of patients suffering from neurological disorders].
    Schwartz I; Meiner Z
    Harefuah; 2013 Mar; 152(3):166-71, 182, 181. PubMed ID: 23713378
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Virtual realities as motivational tools for robotic assisted gait training in children: A surface electromyography study.
    Schuler T; Brütsch K; Müller R; van Hedel HJ; Meyer-Heim A
    NeuroRehabilitation; 2011; 28(4):401-11. PubMed ID: 21725175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rehabilitation robotics.
    Munih M; Bajd T
    Technol Health Care; 2011; 19(6):483-95. PubMed ID: 22129949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [A computerized rehabilitation exerciser for patients with locomotor dysfunctions].
    Dubrovskiĭ VA
    Med Tekh; 2011; (2):14-7. PubMed ID: 21574477
    [No Abstract]   [Full Text] [Related]  

  • 13. [A robotic system for gait re-education in patients with an incomplete spinal cord injury].
    Esclarín-De Ruz A; Alcobendas-Maestro M; Casado-López R; Muñoz-Gonzalez A; Florido-Sánchez MA; González-Valdizán E
    Rev Neurol; 2009 Dec 16-31; 49(12):617-22. PubMed ID: 20013712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A robot and control algorithm that can synchronously assist in naturalistic motion during body-weight-supported gait training following neurologic injury.
    Aoyagi D; Ichinose WE; Harkema SJ; Reinkensmeyer DJ; Bobrow JE
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):387-400. PubMed ID: 17894271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sustainability of motor performance after robotic-assisted treadmill therapy in children: an open, non-randomized baseline-treatment study.
    Borggraefe I; Kiwull L; Schaefer JS; Koerte I; Blaschek A; Meyer-Heim A; Heinen F
    Eur J Phys Rehabil Med; 2010 Jun; 46(2):125-31. PubMed ID: 20485217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The development of two mobile gait rehabilitation systems.
    Seo KH; Lee JJ
    IEEE Trans Neural Syst Rehabil Eng; 2009 Apr; 17(2):156-66. PubMed ID: 19228564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reference trajectory generation for rehabilitation robots: complementary limb motion estimation.
    Vallery H; van Asseldonk EH; Buss M; van der Kooij H
    IEEE Trans Neural Syst Rehabil Eng; 2009 Feb; 17(1):23-30. PubMed ID: 19211320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From diagnostics to therapy--conceptual basis for real-time movement feedback in rehabilitation medicine.
    Schablowski-Trautmann M; Kögel M; Rupp R; Mikut R; Gerner HJ
    Biomed Tech (Berl); 2006 Dec; 51(5-6):299-304. PubMed ID: 17155864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Safety of robotic-assisted treadmill therapy in children and adolescents with gait impairment: a bi-centre survey.
    Borggraefe I; Klaiber M; Schuler T; Warken B; Schroeder SA; Heinen F; Meyer-Heim A
    Dev Neurorehabil; 2010; 13(2):114-9. PubMed ID: 20222772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive position anticipation in a support robot for overground gait training enhances transparency.
    Everarts C; Vallery H; Bolliger M; Ronsse R
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650483. PubMed ID: 24187300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.