These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
276 related articles for article (PubMed ID: 20412830)
41. Determination, characterization and cytotoxicity on HELF cells of ZnO nanoparticles. Yuan JH; Chen Y; Zha HX; Song LJ; Li CY; Li JQ; Xia XH Colloids Surf B Biointerfaces; 2010 Mar; 76(1):145-50. PubMed ID: 19926459 [TBL] [Abstract][Full Text] [Related]
42. Toxicity of ZnO nanoparticles to Escherichia coli: mechanism and the influence of medium components. Li M; Zhu L; Lin D Environ Sci Technol; 2011 Mar; 45(5):1977-83. PubMed ID: 21280647 [TBL] [Abstract][Full Text] [Related]
43. Toxicity of ZnO and CuO nanoparticles to ciliated protozoa Tetrahymena thermophila. Mortimer M; Kasemets K; Kahru A Toxicology; 2010 Mar; 269(2-3):182-9. PubMed ID: 19622384 [TBL] [Abstract][Full Text] [Related]
44. Cytotoxicity, permeability, and inflammation of metal oxide nanoparticles in human cardiac microvascular endothelial cells: cytotoxicity, permeability, and inflammation of metal oxide nanoparticles. Sun J; Wang S; Zhao D; Hun FH; Weng L; Liu H Cell Biol Toxicol; 2011 Oct; 27(5):333-42. PubMed ID: 21681618 [TBL] [Abstract][Full Text] [Related]
45. Oxidative stress of CeO2 nanoparticles via p38-Nrf-2 signaling pathway in human bronchial epithelial cell, Beas-2B. Eom HJ; Choi J Toxicol Lett; 2009 Jun; 187(2):77-83. PubMed ID: 19429248 [TBL] [Abstract][Full Text] [Related]
46. Oxidative stress and apoptosis induced by titanium dioxide nanoparticles in cultured BEAS-2B cells. Park EJ; Yi J; Chung KH; Ryu DY; Choi J; Park K Toxicol Lett; 2008 Aug; 180(3):222-9. PubMed ID: 18662754 [TBL] [Abstract][Full Text] [Related]
47. Zinc oxide nanoparticles induced cyto- and genotoxicity in kidney epithelial cells. Uzar NK; Abudayyak M; Akcay N; Algun G; Özhan G Toxicol Mech Methods; 2015; 25(4):334-9. PubMed ID: 25980654 [TBL] [Abstract][Full Text] [Related]
48. Particulate matter initiates inflammatory cytokine release by activation of capsaicin and acid receptors in a human bronchial epithelial cell line. Veronesi B; Oortgiesen M; Carter JD; Devlin RB Toxicol Appl Pharmacol; 1999 Jan; 154(1):106-15. PubMed ID: 9882597 [TBL] [Abstract][Full Text] [Related]
49. ZnO particulate matter requires cell contact for toxicity in human colon cancer cells. Moos PJ; Chung K; Woessner D; Honeggar M; Cutler NS; Veranth JM Chem Res Toxicol; 2010 Apr; 23(4):733-9. PubMed ID: 20155942 [TBL] [Abstract][Full Text] [Related]
50. Direct-oxidative DNA damage and apoptosis induction in different human respiratory cells exposed to low concentrations of sodium chromate. Cavallo D; Ursini CL; Fresegna AM; Ciervo A; Maiello R; Rondinone B; D'Agata V; Iavicoli S J Appl Toxicol; 2010 Apr; 30(3):218-25. PubMed ID: 19839025 [TBL] [Abstract][Full Text] [Related]
51. In vitro evaluation of cellular responses induced by ZnO nanoparticles, zinc ions and bulk ZnO in fish cells. Fernández D; García-Gómez C; Babín M Sci Total Environ; 2013 May; 452-453():262-74. PubMed ID: 23523724 [TBL] [Abstract][Full Text] [Related]
52. Contributions of surface topography and cytotoxicity to the macrophage response to zinc oxide nanorods. Zaveri TD; Dolgova NV; Chu BH; Lee J; Wong J; Lele TP; Ren F; Keselowsky BG Biomaterials; 2010 Apr; 31(11):2999-3007. PubMed ID: 20074795 [TBL] [Abstract][Full Text] [Related]
53. Reactive oxygen intermediate-release of fibre-exposed monocytes increases inflammatory cytokine-mRNA level, protein tyrosine kinase and NF-kappaB activity in co-cultured bronchial epithelial cells (BEAS-2B). Drumm K; Messner C; Kienast K Eur J Med Res; 1999 Jul; 4(7):257-63. PubMed ID: 10425262 [TBL] [Abstract][Full Text] [Related]
54. Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Gurr JR; Wang AS; Chen CH; Jan KY Toxicology; 2005 Sep; 213(1-2):66-73. PubMed ID: 15970370 [TBL] [Abstract][Full Text] [Related]
55. Repetitive exposure to zinc oxide nanoparticles induces dna damage in human nasal mucosa mini organ cultures. Hackenberg S; Zimmermann FZ; Scherzed A; Friehs G; Froelich K; Ginzkey C; Koehler C; Burghartz M; Hagen R; Kleinsasser N Environ Mol Mutagen; 2011 Aug; 52(7):582-9. PubMed ID: 21786336 [TBL] [Abstract][Full Text] [Related]
56. Toxicological aspects of long-term treatment of keratinocytes with ZnO and TiO2 nanoparticles. Kocbek P; Teskac K; Kreft ME; Kristl J Small; 2010 Sep; 6(17):1908-17. PubMed ID: 20677183 [TBL] [Abstract][Full Text] [Related]
57. Improving the selective cancer killing ability of ZnO nanoparticles using Fe doping. Thurber A; Wingett DG; Rasmussen JW; Layne J; Johnson L; Tenne DA; Zhang J; Hanna CB; Punnoose A Nanotoxicology; 2012 Jun; 6(4):440-52. PubMed ID: 21635174 [TBL] [Abstract][Full Text] [Related]
58. The fate of ZnO nanoparticles administered to human bronchial epithelial cells. Gilbert B; Fakra SC; Xia T; Pokhrel S; Mädler L; Nel AE ACS Nano; 2012 Jun; 6(6):4921-30. PubMed ID: 22646753 [TBL] [Abstract][Full Text] [Related]
59. Interaction and nanotoxic effect of ZnO and Ag nanoparticles on mesophilic and halophilic bacterial cells. Sinha R; Karan R; Sinha A; Khare SK Bioresour Technol; 2011 Jan; 102(2):1516-20. PubMed ID: 20797851 [TBL] [Abstract][Full Text] [Related]
60. Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus. Baek YW; An YJ Sci Total Environ; 2011 Mar; 409(8):1603-8. PubMed ID: 21310463 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]