These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 20412902)
21. Charge state distribution and hydrogen/deuterium exchange of alpha-lactalbumin and beta-lactoglobulin preparations by electrospray ionization mass spectrometry. Alomirah H; Alli I; Konishi Y J Agric Food Chem; 2003 Mar; 51(7):2049-57. PubMed ID: 12643672 [TBL] [Abstract][Full Text] [Related]
22. Selective separation of beta-lactoglobulin from sweet whey using CGAs generated from the cationic surfactant CTAB. Fuda E; Bhatia D; Pyle DL; Jauregi P Biotechnol Bioeng; 2005 Jun; 90(5):532-42. PubMed ID: 15816026 [TBL] [Abstract][Full Text] [Related]
23. Adsorption behaviour of lactoferrin in oil-in-water emulsions as influenced by interactions with beta-lactoglobulin. Ye A; Singh H J Colloid Interface Sci; 2006 Mar; 295(1):249-54. PubMed ID: 16139288 [TBL] [Abstract][Full Text] [Related]
24. pH-stability and thermal properties of microbial transglutaminase-treated whey protein isolate. Agyare KK; Damodaran S J Agric Food Chem; 2010 Feb; 58(3):1946-53. PubMed ID: 20088508 [TBL] [Abstract][Full Text] [Related]
25. Invited review: Astringency in whey protein beverages. Carter BG; Foegeding EA; Drake MA J Dairy Sci; 2020 Jul; 103(7):5793-5804. PubMed ID: 32448585 [TBL] [Abstract][Full Text] [Related]
26. Electrostatic effects on the yield stress of whey protein isolate foams. Davis JP; Foegeding EA; Hansen FK Colloids Surf B Biointerfaces; 2004 Mar; 34(1):13-23. PubMed ID: 15261086 [TBL] [Abstract][Full Text] [Related]
27. Interactions of salivary mucins and saliva with food proteins: a review. Çelebioğlu HY; Lee S; Chronakis IS Crit Rev Food Sci Nutr; 2020; 60(1):64-83. PubMed ID: 30632771 [TBL] [Abstract][Full Text] [Related]
28. Fractionation of whey protein isolate with supercritical carbon dioxide to produce enriched α-lactalbumin and β-lactoglobulin food ingredients. Bonnaillie LM; Tomasula PM J Agric Food Chem; 2012 May; 60(20):5257-66. PubMed ID: 22559165 [TBL] [Abstract][Full Text] [Related]
29. Isolation and characterization of an aggregating peptide from a tryptic hydrolysate of whey proteins. Pouliot Y; Guy MM; Tremblay M; Gaonac'h AC; Chay Pak Ting BP; Gauthier SF; Voyer N J Agric Food Chem; 2009 May; 57(9):3760-4. PubMed ID: 19298064 [TBL] [Abstract][Full Text] [Related]
30. Separation and determination of beta-lactoglobulin variants A and B in cow's milk by capillary free zone electrophoresis. Olguin-Arredondo H; Vallejo-Córdoba B J Capill Electrophor Microchip Technol; 1999; 6(5-6):145-9. PubMed ID: 11681519 [TBL] [Abstract][Full Text] [Related]
31. Selective separation of the major whey proteins using ion exchange membranes. Goodall S; Grandison AS; Jauregi PJ; Price J J Dairy Sci; 2008 Jan; 91(1):1-10. PubMed ID: 18096919 [TBL] [Abstract][Full Text] [Related]
32. Electrophoresis of cottage cheese whey proteins and their polymers. Lee DN; Moore EE; Merson RL J Dairy Sci; 1975 May; 58(5):658-67. PubMed ID: 237944 [TBL] [Abstract][Full Text] [Related]
33. Effect of pH on the association of denatured whey proteins with casein micelles in heated reconstituted skim milk. Anema SG; Li Y J Agric Food Chem; 2003 Mar; 51(6):1640-6. PubMed ID: 12617598 [TBL] [Abstract][Full Text] [Related]
34. Thermal modifications of structure and co-denaturation of alpha-lactalbumin and beta-lactoglobulin induce changes of solubility and susceptibility to proteases. Bertrand-Harb C; Baday A; Dalgalarrondo M; Chobert JM; Haertlé T Nahrung; 2002 Aug; 46(4):283-9. PubMed ID: 12224426 [TBL] [Abstract][Full Text] [Related]
35. Comparisons of the foaming and interfacial properties of whey protein isolate and egg white proteins. Davis JP; Foegeding EA Colloids Surf B Biointerfaces; 2007 Feb; 54(2):200-10. PubMed ID: 17123793 [TBL] [Abstract][Full Text] [Related]
36. Effect of iron saturation on the recovery of lactoferrin in rennet whey coming from heat-treated skim milk. Brisson G; Britten M; Pouliot Y J Dairy Sci; 2007 Jun; 90(6):2655-64. PubMed ID: 17517705 [TBL] [Abstract][Full Text] [Related]
37. Saliva characteristics and individual sensitivity to phenolic astringent stimuli. Dinnella C; Recchia A; Fia G; Bertuccioli M; Monteleone E Chem Senses; 2009 May; 34(4):295-304. PubMed ID: 19193699 [TBL] [Abstract][Full Text] [Related]
38. A physiological model of tea-induced astringency. Nayak A; Carpenter GH Physiol Behav; 2008 Oct; 95(3):290-4. PubMed ID: 18590751 [TBL] [Abstract][Full Text] [Related]
39. Peptides released from acid goat whey by a yeast-lactobacillus association isolated from cheese microflora. Didelot S; Bordenave-Juchereau S; Rosenfeld E; Piot JM; Sannier F J Dairy Res; 2006 May; 73(2):163-70. PubMed ID: 16476172 [TBL] [Abstract][Full Text] [Related]
40. Astringency reduction in red wine by whey proteins. Jauregi P; Olatujoye JB; Cabezudo I; Frazier RA; Gordon MH Food Chem; 2016 May; 199():547-55. PubMed ID: 26776007 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]