These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 20413181)
1. Isolation of genes differentially expressed during development and ripening of Fragaria chiloensis fruit by suppression subtractive hybridization. Pimentel P; Salvatierra A; Moya-León MA; Herrera R J Plant Physiol; 2010 Sep; 167(14):1179-87. PubMed ID: 20413181 [TBL] [Abstract][Full Text] [Related]
2. Generation and analysis of ESTs from strawberry (Fragaria xananassa) fruits and evaluation of their utility in genetic and molecular studies. Bombarely A; Merchante C; Csukasi F; Cruz-Rus E; Caballero JL; Medina-Escobar N; Blanco-Portales R; Botella MA; Muñoz-Blanco J; Sánchez-Sevilla JF; Valpuesta V BMC Genomics; 2010 Sep; 11():503. PubMed ID: 20849591 [TBL] [Abstract][Full Text] [Related]
3. Ethylene application at the immature stage of Fragaria chiloensis fruit represses the anthocyanin biosynthesis with a concomitant accumulation of lignin. Figueroa NE; Gatica-Meléndez C; Figueroa CR Food Chem; 2021 Oct; 358():129913. PubMed ID: 33933955 [TBL] [Abstract][Full Text] [Related]
4. Methyl jasmonate treatment induces changes in fruit ripening by modifying the expression of several ripening genes in Fragaria chiloensis fruit. Concha CM; Figueroa NE; Poblete LA; Oñate FA; Schwab W; Figueroa CR Plant Physiol Biochem; 2013 Sep; 70():433-44. PubMed ID: 23835361 [TBL] [Abstract][Full Text] [Related]
5. Gene expression and metabolite accumulation during strawberry (Fragaria × ananassa) fruit development and ripening. Baldi P; Orsucci S; Moser M; Brilli M; Giongo L; Si-Ammour A Planta; 2018 Nov; 248(5):1143-1157. PubMed ID: 30066220 [TBL] [Abstract][Full Text] [Related]
6. Differentially expressed cDNAs at the early stage of banana ripening identified by suppression subtractive hybridization and cDNA microarray. Xu BY; Su W; Liu JH; Wang JB; Jin ZQ Planta; 2007 Jul; 226(2):529-39. PubMed ID: 17334781 [TBL] [Abstract][Full Text] [Related]
7. Molecular characterization of a strawberry FaASR gene in relation to fruit ripening. Chen JY; Liu DJ; Jiang YM; Zhao ML; Shan W; Kuang JF; Lu WJ PLoS One; 2011; 6(9):e24649. PubMed ID: 21915355 [TBL] [Abstract][Full Text] [Related]
8. SRNAome and transcriptome analysis provide insight into strawberry fruit ripening. Wang Y; Li W; Chang H; Zhou J; Luo Y; Zhang K; Zuo J; Wang B Genomics; 2020 May; 112(3):2369-2378. PubMed ID: 31945464 [TBL] [Abstract][Full Text] [Related]
9. Genome-wide analysis of the NAC transcription factor family and their expression during the development and ripening of the Fragaria × ananassa fruits. Moyano E; Martínez-Rivas FJ; Blanco-Portales R; Molina-Hidalgo FJ; Ric-Varas P; Matas-Arroyo AJ; Caballero JL; Muñoz-Blanco J; Rodríguez-Franco A PLoS One; 2018; 13(5):e0196953. PubMed ID: 29723301 [TBL] [Abstract][Full Text] [Related]
11. Characterization of FchAGL9 and FchSHP, two MADS-boxes related to softening of Fragaria chiloensis fruit. Zamorano-Curaqueo M; Valenzuela-Riffo F; Herrera R; Moya-León MA Plant Physiol Biochem; 2024 Oct; 215():108985. PubMed ID: 39084168 [TBL] [Abstract][Full Text] [Related]
13. alpha-l-Arabinofuranosidase from strawberry fruit: cloning of three cDNAs, characterization of their expression and analysis of enzymatic activity in cultivars with contrasting firmness. Rosli HG; Civello PM; Martínez GA Plant Physiol Biochem; 2009 Apr; 47(4):272-81. PubMed ID: 19153050 [TBL] [Abstract][Full Text] [Related]
14. Analysis of eight phytohormone concentrations, expression levels of ABA biosynthesis genes, and ripening-related transcription factors during fruit development in strawberry. Kim J; Lee JG; Hong Y; Lee EJ J Plant Physiol; 2019 Aug; 239():52-60. PubMed ID: 31185317 [TBL] [Abstract][Full Text] [Related]
15. Insights into the Genes Involved in ABA Biosynthesis and Perception during Development and Ripening of the Chilean Strawberry Fruit. Moya-León MA; Stappung Y; Mattus-Araya E; Herrera R Int J Mol Sci; 2023 May; 24(10):. PubMed ID: 37239876 [TBL] [Abstract][Full Text] [Related]
16. SUCROSE NONFERMENTING1-RELATED PROTEIN KINASE2.6, an ortholog of OPEN STOMATA1, is a negative regulator of strawberry fruit development and ripening. Han Y; Dang R; Li J; Jiang J; Zhang N; Jia M; Wei L; Li Z; Li B; Jia W Plant Physiol; 2015 Mar; 167(3):915-30. PubMed ID: 25609556 [TBL] [Abstract][Full Text] [Related]
17. XTHs from Fragaria vesca: genomic structure and transcriptomic analysis in ripening fruit and other tissues. Opazo MC; Lizana R; Stappung Y; Davis TM; Herrera R; Moya-León MA BMC Genomics; 2017 Nov; 18(1):852. PubMed ID: 29115918 [TBL] [Abstract][Full Text] [Related]
18. Comparison of transcriptional profiles of flavonoid genes and anthocyanin contents during fruit development of two botanical forms of Fragaria chiloensis ssp. chiloensis. Salvatierra A; Pimentel P; Moya-Leon MA; Caligari PD; Herrera R Phytochemistry; 2010 Nov; 71(16):1839-47. PubMed ID: 20800857 [TBL] [Abstract][Full Text] [Related]
19. Sucrose functions as a signal involved in the regulation of strawberry fruit development and ripening. Jia H; Wang Y; Sun M; Li B; Han Y; Zhao Y; Li X; Ding N; Li C; Ji W; Jia W New Phytol; 2013 Apr; 198(2):453-465. PubMed ID: 23425297 [TBL] [Abstract][Full Text] [Related]
20. Expression Profiling of Strawberry Allergen Fra a during Fruit Ripening Controlled by Exogenous Auxin. Ishibashi M; Yoshikawa H; Uno Y Int J Mol Sci; 2017 Jun; 18(6):. PubMed ID: 28574483 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]